DOI QR코드

DOI QR Code

NUMERICAL SOLUTION FOR THE PARAMETER ESTIMATION OF THE MOISTURE TRANSFER COEFFICIENT

  • Lee, Yong-Hun (Department of Mathematics (Institute of Pure and Applied Mathematics), Chonbuk National University)
  • Received : 2010.01.26
  • Accepted : 2010.04.20
  • Published : 2010.06.25

Abstract

We investigate the estimation of the moisture transfer coefficients in porous media by optimization technique which minimizes the functional defined by the squares error of the numerical solution of an inverse diffusion problem from their experimental values of the moisture content at the some time-steps. In this paper, we solve a diffusion equation numerically by the control volume finite element methods.

Keywords

References

  1. I. V. Amirkhanov, E. Pavlusova, M. Pavlus, T. P. Puzynina, I. V. Puzynin and I. Sarhadov, Numerical solution of an inverse diffusion problem for the moisture transfer coefficient in a porous material, Materials anf Structures 41 (2008), 335-344. https://doi.org/10.1617/s11527-007-9246-9
  2. Baliga and S. V. Patankar, A New Finite Element Formulation for Convection-Diffusion Problems, Numerical Heat Transfer 3 (1980), 393-409.
  3. W. J. Ferguson, A Control Volume Finite Element Numerical Simulation of the high temperature drying of Spruce, Drying Technology 13 (1995), 607-634. https://doi.org/10.1080/07373939508916977
  4. W. Kang, Y. H. Lee, W, Y. Chung and H. R. Xu, Parameter estimation of moisture diffusivity in wood by an inverse method, Journal of Wood Science 55 (2009), 83-90. https://doi.org/10.1007/s10086-008-1006-0
  5. S. V. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publ. Corp., New York, 1980
  6. H. Pleinert, H. Sadouki, F. H. Wittmann, Determination of moisture distribution in porous building materials by neutron transmission analysis, Mater. Struct. 31 (1998), 218-224. https://doi.org/10.1007/BF02480418
  7. Wenyu Sun and Ya-Xiang Yuan, Optimization Theory and Methods Nonlinear Programming, Springer, (2006)
  8. S. L. Truscott and I. W. Turner, Heterogeneous three-dimensional computational model for wood drying, Applied Mathematical Modelling 29 (2005), 381-410. https://doi.org/10.1016/j.apm.2004.09.008
  9. H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics The Finite Volume Method, Pearson Education Limited (2007).
  10. V. R. Voller, Basic Control Volume Finite Element Methods for Fluids and Solids IISc Research Monographs Series Vol. 1, World Scientific Publishing Co. (2009).