References
- I. V. Amirkhanov, E. Pavlusova, M. Pavlus, T. P. Puzynina, I. V. Puzynin and I. Sarhadov, Numerical solution of an inverse diffusion problem for the moisture transfer coefficient in a porous material, Materials anf Structures 41 (2008), 335-344. https://doi.org/10.1617/s11527-007-9246-9
- Baliga and S. V. Patankar, A New Finite Element Formulation for Convection-Diffusion Problems, Numerical Heat Transfer 3 (1980), 393-409.
- W. J. Ferguson, A Control Volume Finite Element Numerical Simulation of the high temperature drying of Spruce, Drying Technology 13 (1995), 607-634. https://doi.org/10.1080/07373939508916977
- W. Kang, Y. H. Lee, W, Y. Chung and H. R. Xu, Parameter estimation of moisture diffusivity in wood by an inverse method, Journal of Wood Science 55 (2009), 83-90. https://doi.org/10.1007/s10086-008-1006-0
- S. V. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publ. Corp., New York, 1980
- H. Pleinert, H. Sadouki, F. H. Wittmann, Determination of moisture distribution in porous building materials by neutron transmission analysis, Mater. Struct. 31 (1998), 218-224. https://doi.org/10.1007/BF02480418
- Wenyu Sun and Ya-Xiang Yuan, Optimization Theory and Methods Nonlinear Programming, Springer, (2006)
- S. L. Truscott and I. W. Turner, Heterogeneous three-dimensional computational model for wood drying, Applied Mathematical Modelling 29 (2005), 381-410. https://doi.org/10.1016/j.apm.2004.09.008
- H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics The Finite Volume Method, Pearson Education Limited (2007).
- V. R. Voller, Basic Control Volume Finite Element Methods for Fluids and Solids IISc Research Monographs Series Vol. 1, World Scientific Publishing Co. (2009).