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A METHOD OF COMPUTATIONS OF

CONGRUENT NUMBERS AND ELLIPTIC CURVES

Park, Jong Youll† and Lee, Heon Soo

Abstract. We study the concepts of congruent number problems and

elliptic curves. We research the structure of the group of elliptic curves

and find out a method of the computation of L(En, 1) and L′(En, 1) by

using SAGE program. In this paper, we obtain the first few congruent

numbers for n ≤ 2500.

1. Introduction

One of the oldest unsolved problem in mathematics is to determine the
congruent numbers: Give a way to decide whether or not an integer is the area
of a right triangle with rational side lengths. For example, 6 is the area of the
right triangle with side lengths 3, 4 and 5. 350 years ago, Fermat proved that
1 is not a congruent number. The questions we will examine here is: Which
natural numbers occur as the area of a rational right triangle?

Definition 1. A natural number n is called a congruent number if there is

a rational right triangle with the area n: there are rational numbers a, b, c > 0
such that a2 + b2 = c2 and 1

2ab = n.

The congruent number problem is to determine which natural numbers are
congruent numbers. No one has yet found an unconditional algorithm that
would decide in a finite number of steps whether a given natural number is
congruent or not.
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Recently the congruent number problem has become very popular with the
discovery of a deep connection between this problem and the arithmetic of
elliptic curves. It is also interesting to notice that if any number n is a congruent
number, then s2n is also a congruent number by multiplying the perpendicular
legs each by s. Hence, to treat the general case one need to consider only
the congruent number problem for natural numbers n having no square factor
larger than 1. For example, since 1 and 2 are not congruent numbers, 4, 8 and
9 cannot be congruent numbers either. From now on, we assume that natural
numbers under consideration are square free.

2. Congruent Number Problems and Elliptic curves

There are two distinct problems concerning congruent numbers: How to
decide whether a given integer n is a congruent number, and given a congruent
number n. How to find a rational right triangle with the area n?

Theorem 2. For a square-free positive integer n, n is a congruent number

if and only if there is a rational number x such that x − n, x and x + n are

each the squares of a rational number.

Proof. Suppose n is a congruent number. That is, there are rational numbers
a, b and c such that a2 + b2 = c2 and 1

2ab = n. We choose

x =
( c

2

)2

⇒ x± n =
c2 ± 4n

4
=

(
a± b

2

)2

Conversely, say that x− n, x and x + n are all rational squares. We choose
a =

√
x + n−√x− n, b =

√
x + n +

√
x− n and c = 2

√
x , then a2 + b2 = c2

and 1
2ab = n. ¤

The connection between congruent numbers and elliptic curves is the follow-
ing fact:

Theorem 3. For a square-free positive integer n, n is a congruent number if

and only if there exists a rational point on the elliptic curve En : y2 = x3−n2x.

Proof. Suppose that there exists a rational point (x, y) such that y 6= 0
on the elliptic curve En : y2 = x3 − n2x. Let a =

∣∣∣x2−n2

y

∣∣∣ , b =
∣∣∣ 2xn

y

∣∣∣ and

c =
∣∣∣x2+n2

y

∣∣∣. Then we can obtain a2 + b2 = c2 and 1
2ab = n.
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Conversely, make the substitution: x = ( c
2 )2 and y = c(a2−b2)

8 . Then (x, y)
is a rational point of y2 = x3 − n2x. ¤

For example, when n = 6 we can obtain a rational point (x, y) =
(

25
4 , −35

8

)
.

3. The Structure of the Group of Elliptic Curves

For our purpose, we consider an elliptic curve defined by a cubic equation
of the form

y2 = x3 + ax + b (a, b ∈ Z) (3.1)

with 4a3 + 27b2 6= 0. This means that y2 = x3 + ax + b(a, b ∈ Z) has no
repeated roots in the complex numbers C. It thus has either three real roots or
one real root. Accordingly, the set of points on this curve with real coordinates
has either one or two components.

Let E(Q) denote the set of rational points on an elliptic curve E. E(Q) ={
(x, y) ∈ Q2|y2 = x3 + ax + b

} ∪ {O}. This ideal point O is to be regarded as
a point that lies at both ”ends” of every vertical line. The following two facts
make the study of elliptic curves interesting:

1. An elliptic curve may or may not have infinitely many rational points.
Which elliptic curve has only finitely many rational points is still an open
question.

2. The set E(Q) has a structure of an Abelian group. We denote the group
law by +. It is given by the chord and tangent method. The sum of two points
can be explicitly computed as follows.

To add two points P1 = (x1, y1) and P2 = (x2, y2) of E(Q) intersect the
chord line L through P1 and P2 (the tangent to E at P if P1 = P2 = P with
E. A straight line meets a cubic in three points. Let P3 = (x3, y3) be the
third point of intersection of E with L. Then P1 + P2 = (x3,−y3). The point
at infinity acts as the identity because any two points of E(Q) that lie on a
vertical line are collinear with O. We show that P1 + P2 belongs to E(Q).

We actually compute the coordinates of P1 + P2. For a point P = (x, y),
let x = x(P ) denote the x-coordinate of P (similarly, define y(P )), and let the
line L that arises in the definition of addition have the equation
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y = mx + l. (3.2)

Then

m =
y1 − y2

x1 − x2

which is rational. Substituting from (3.2) into (3.1), we have

x3 −m2x2 + (a− 2ml)x + b− l2 = 0. (3.3)

Since x1, x2 and x3 are the three solutions of (3.3), this is the same as

(x− x1)(x− x2)(x− x3) = 0

or in expanded form

x3 − (x1 + x2 + x3)x2 + (x1x2 + x2x3 + x3x1)x− x1x2x3 = 0. (3.4)

Comparing the coefficients of (3.3) and (3.4), we get

x(P1 + P2) = x3 = m2 − (x1 + x2) =
(

y1 − y2

x1 − x2

)2

− (x1 + x2).

We can then appeal to (3.2) to obtain

y(P1 + P2) =
(

y1 − y2

x1 − x2

)
=

[(
y1 − y2

x1 − x2

)2

− (x1 + x2)

]
+ l.

Because l is plainly rational numbers, this shows that P1 + P2 has rational
coordinates. Mordell-Weil proves that E(Q) has the following property. Let
E be an elliptic curve defined over Q. Then E(Q) is a finite group. Sup-
pose we have points R1, R2, · · · , Rn representing the finitely many cosets in
E(Q)/2E(Q). Let c = Maxi{h(Ri)} where h(Ri) is the cannonical height. Let
Q1, Q2, · · · , Qm be the set of points with h(Qi) ≤ c. Then E(Q) is generated
by R1, R2, · · · , Rn, Q1, Q2, · · · , Qm.
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Theorem 4 (Mordell-Weil). Let E be an elliptic curve defined over Q

defined by the form

y2 = x3 + ax + b (a, b ∈ Z)

with 4a3 + 27b2 6= 0. Then E(Q) is a finitely generated abelian group.

Hence as a group

E(Q) ∼= Zr
⊕

T

where T = E(Q)tor is a finite group, called the torsion subgroup of E(Q).
It consists of the elements of E(Q) of finite order. The nonnegative integer
r = rQ(E) is called the rank of E over Q. Clearly, rQ(E) > 0 if and only if
E(Q) has infinitely many rational points. In particular, a square-free integer
n is a congruent number if and only if the elliptic curve defined by (3.1) has
a positive rank. While the rank of rQ(E) is harder to compute, the torsion
subgroup E(Q)tor is fairly well understood. In fact, the following well-known
theorem gives an algorithm to determine E(Q)tor for an arbitrary elliptic curve
E.

Theorem 5 (Lutz-Nagell). Suppose that the elliptic curve E is given by

y2 = x3 + ax + b (a, b ∈ Z),

where 4a3 + 27b2 6= 0. If P = (x, y) is a point of E(Q)tor that is different from

O, then x and y are integers.

Moreover, either y = 0 or y2 divides 4 ([6, p. 205.]). We need the Lutz-
Nagell theorem primarily to link the existence of a right triangle of area n with
rational side-lengths to the positivity of the rank of the elliptic curves defined
by (3.1).

4. Birch and Swinnerton-Dyer Conjecture

We give the definition of the L-series of an elliptic curve E defined by the
form

y2 = x3 + ax + b (a, b ∈ Z)



182 Park, Jong Youll† and Lee, Heon Soo

with 4a3 + 27b2 6= 0. Let ap = p + 1− ]E(Fp). Then the L-function of E is
the Euler product

LE(s) =
∏

badp

(1− app
−s)−1

∏

goodp

(1− app
−s + p1−2s)−1,

where the concept of the reduction mod p in ([6, p. 207]).
The product over all p yields an expression Le(S) =

∑∞
n=1 ann−s. To ex-

plain the analytic properties of Le(S) we introduce a new function fE(τ) =∑∞
n=1 anqn where τ ∈ H, the upper half of the complex plane and q = e2πiτ .

Let N be a positive integer and define

Γ0(N) =
{(

a b

c d

)
∈ SL2 | c ≡ 0(mod N)

}
.

Theorem 6 (Breuil, Conard, Diamond, Taylor, Wiles). Let E be

an elliptic curve over Q defined by the form

y2 = x3 + ax + b (a, b ∈ Z)

with 4a3 + 27b2 6= 0. There exists an integer N such that, for all τ ∈ H,

fE

(
aτ+b
cτ+d

)
= (cτ + d)2fE(τ) for all

(
a b
c d

) ∈ Γ0(N), fE (−1/Nτ ) = ±Nτ
2fE(τ)

([6, p. 436]).

The theorem says that fE() is a modular form of weight 2 and level N . The
smallest possible N is called the conductor of E. Let En be the elliptic curve

En : y2 = x3 − n2x,

where n is a positive square-free integer. If n is odd, let N = 32n2, and if n

is even, let N = 16n2. The number N is called the conductor of En. For any
prime p . 2n, let ap = p + 1− ]En(Fp) where ]En(Fp) is the number of points
on the elliptic curve En viewed modulo p. If p|2n, let ap = 0. If m and n are
coprime integers, let amr = amar. We can define the L series when s = 1.

L(En, 1) =
{

x, n = 5, 6, 7 (mod 8)
2

∑∞
k=1

ak

k e−2kπ/
√

N , otherwise

We can explain this conjecture roughly. If En(Q) is infinite then the number
]E(Fp) will tend to be big, since you get lots of elements of E(Fp) by reducing
the elements of En(Q) modulo p. Thus ap = p + 1 − ]En(Fp) will tend to be
small. One can prove that L(En, 1) = 0, then the E(Fp) are big and the points
have to come from somewhere so En(Q) is big.
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Conjecture 7 ( Birch and Swinnerton-Dyer). Let En be the elliptic

curve defined by of the form

En = y2 = x3 − n2x,

where n is a positive square-free integer.

We have L(En, 1) = 0 if and only if En(Q) is infinite ([5, p. 16]). This
statement remains unproved, although there has been some progress. In 1977,
Coates and Wiles showed that if En has complex multiplication and has a point
of infinite order, then L(En, 1) = 0. In 1983, Gross and Zagier have shown that
if En is a elliptic curve such that L(En, 1) = 0 and L′(En, 1) 6= 0, then En(Q)
contains a rational point of infinite order. In 2000, the Clay Mathematics
Institute listed the Conjecture of Birch and Swinnerton-Dyer as one of its
million dollar problems.

5. A computation for various n

SAGE program is an open source computer algebra package that can be
downloaded for free from http://www.sagemath.org/. It is difficult to define
the general function L(En, s) for every n, but we can only evaluate L(En, 1)
by SAGE program. The Conjecture 5 says that if L(En, 1) 6= 0, then En(Q)
is finite. By Theorem 3, the finiteness of the group En(Q) implies that n is
not a congruent number. For example, we can find that L(E1, 1) 6= 0 and
L(E41, 1) = 0. From the theorem of Gross and Zagier, if we can calculate
L(En, 1) = 0 and L′(En, 1) 6= 0 then we can say that n is a Congruent number.
By using SAGE program, we can compute L(En, 1) and L′(En, 1). We can get
a table of the first few congruent numbers.

For example for n = 5, we can compute L(E5, 1) and L′(E5, 1) the following
way using SAGE program;

sage: E = EllipticCurve([−52 ,0])
sage: E

Elliptic Curve defined by y2 = x3 − 25x over Rational Field
sage: E.rank()

0
sage: L = E.lseries().dokchitser()
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(* where E.lseries().dokchitser() is a Dokchitsers L-functions Calculator

coded Sage interface by William Stein.)

sage: L(1)

0

sage: L.derivative(1,E.rank())

2.22737037954414

’L.derivative(1, E.rank())’ returns the first derivative of the L-series at s in
the case of the L-series of a rank 2 Curve and ’L.derivative(1)’ returns in the
case of the L-series of rank 1 Curve.

For another instance, we can compute L(E269, 1) and L′(E269, 1) in the case
of a rank 1 elliptic curve when n = 269 as followings;

sage: E = EllipticCurve([ −2692 ,0])

sage: E

Elliptic Curve defined by y2 = x3 − 72361 ∗ x over Rational Field

sage: E.rank()

The rank has not been completely determined, only a lower bound of
0

and an upper bound of 1. Traceback (click to the left for traceback).

...

RuntimeError: Rank not provably correct.

sage: L = E.lseries().dokchitser()

sage: L(1)

0

sage: L.derivative(1,E.rank())

The rank has not been completely determined, only a lower bound of
0

and an upper bound of 1. Traceback (click to the left for traceback).

...

RuntimeError: Rank not provably correct.

Return the error message because the rank of Elliptic Curve defined by
y2 = x3 − 72361x over Rational Field is has not been completely determined,
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only a lower bound of 0 and an upper bound of 1. L.derivative(1) has to be
used in this case.)

sage: L.derivative(1)
8.94367097457600

Using the SAGE program, we evaluate values of L(En, 1), L′(En, 1) and
rank of En for n ≤ 100 in the Table 1. And, we have congruent numbers for
n ≤ 2500 in the Table 2.

Table 1. L(En, 1) and L′(En, 1) for n ≤ 100
n L(En, 1) L′(En, 1) rank of En

1 0.655514388573030 0.655514388573030 0
2 0.927037338650686 0.927037338650686 0
3 1.51384563480125 1.51384563480125 0
4 0.655514388573030 0.655514388573030 0
5 0 2.22737037954414 1
6 0 1.90246004901839 1
7 0 2.96211488325481 1
8 0.927037338650686 0.927037338650686 0
9 0.655514388573030 0.655514388573030 0

10 1.65833480552274 1.65833480552274 0
11 0.790580098754899 0.790580098754899 0
12 1.51384563480125 1.51384563480125 0
13 0 4.24156537851424 1
14 0 2.99107433715881 1
15 0 4.03863541936211 1
16 0.655514388573030 0.655514388573030 0
17 2.54376947124591 2.54376947124591 0
18 0.927037338650686 0.927037338650686 0
19 0.601541258068777 0.601541258068777 0
20 0 2.22737037954414 1
21 0 3.80260949015458 1
22 0 4.75522489696261 1
23 0 5.66850104647998 1
24 0 1.90246004901839 1
25 0.655514388573030 0.655514388573030 0
25 0.655514388573030 0.655514388573030 0
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n L(En, 1) L′(En, 1) rank of En

26 1.02845558731530 1.02845558731530 0
27 1.51384563480125 1.51384563480125 0
28 0 2.96211488325481 1
29 0 4.30603790301781 1
30 0 5.16341557986856 1
31 0 3.48514648926405 1
32 0.927037338650686 0.927037338650686 0
33 1.82576653132841 1.82576653132841 0
34 8.06022589243296e-20 12.7703039097255 2
35 1.77283447852243 1.77283447852243 0
36 0.655514388573030 0.655514388573030 0
37 0 5.84755917186704 1
38 0 6.14944286741449 1
39 0 4.85417809014757 1
40 1.65833480552274 1.65833480552274 0
41 1.56658097453827e-19 16.4310487151526 2
42 3.23673811536547 3.23673811536547 0
43 3.59874025523419 3.59874025523419 0
44 0.790580098754899 0.790580098754899 0
45 0 2.22737037954414 1
46 0 3.50308083196832 1
47 0 6.33439060047744 1
48 1.51384563480125 1.51384563480125 0
49 0.655514388573030 0.655514388573030 0
50 0.927037338650686 0.927037338650686 0
51 1.46864598898018 1.46864598898018 0
52 0 4.24156537851424 1
53 0 7.77431014997303 1
54 0 1.90246004901839 1
55 0 7.03122889532326 1
56 0 2.99107433715881 1
57 1.38920002909870 1.38920002909870 0
58 0.688586048413973 0.688586048413973 0
59 0.341362817522334 0.341362817522334 0
60 0 4.03863541936211 1
61 0 5.57653526735718 1
62 0 7.19215527552409 1
63 0 0, 2.96211488325481 1
64 0.655514388573030 0.655514388573030 0
65 6.22660450905835e-20 24.2153538528129 2
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n L(En, 1) L′(En, 1) rank of En

66 2.58202379033152 2.58202379033152 0
67 0.320335314478121 0.320335314478121 0
68 2.54376947124591 2.54376947124591 0
69 0 7.03383838349760 1
70 0 5.17645286180021 1
71 0 2.55288605041919 1
72 0.927037338650686 0.927037338650686 0
73 1.22755449667452 1.22755449667452 0
74 0.609615998673705 0.609615998673705 0
75 1.51384563480125 1.51384563480125 0
76 0.601541258068777 0.601541258068777 0
77 0 9.90734919480397 1
78 0 7.77952747985335 1
79 0 5.69024933880479 1
80 0 2.22737037954414 1
81 0.655514388573030 0.655514388573030 0
82 2.31646253741247 2.31646253741247 0
83 0.287808207097252 0.287808207097252 0
84 0 3.80260949015458 1
85 0 5.24636933737291 1
86 0 3.32848274901069 1
87 0 11.0196331919950 1
88 0 4.75522489696261 1
89 1.11175017952172 1.11175017952172 0
90 1.65833480552274 1.65833480552274 0
91 1.09946527007063 1.09946527007063 0
92 0 5.66850104647998 1
93 0 7.93765965315906 1
94 0 5.17721825236304 1
95 0 7.85471664623426 1
96 0 1.90246004901839 1
97 1.06491843300406 1.06491843300406 0
98 0.927037338650686 0.927037338650686 0
99 0.790580098754899 0.790580098754899 0

100 0.655514388573030 0.655514388573030 0
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Table 2. Congruent numbers for n ≤ 2500
Rank 1 Rank 2

100 5,6,7,13,14,15,20,21,22,23,24,28,29,30,31,34,37,38,39,
41,45,46,47,52,53,54,55,56,60,61,62,63,65,69,70,71,77,
78,79,80,84,85,86,87,88,92,93,94,95,96 (50)

200 101,102,103,109,110,111,112,116,117,118,119,120,124,
125,126,127,133,134,135,136,137,138,141,142,143,145,
148,149,150,151,152,154,156,157,158,159,161,164,165,
166,167,173,174,175,180,181,182,183,184,188,189,190,
191,194,197,198,199 (57)

300 269,277,293 205,206,207,208,210,212,213,214,215,216,237,238,219,
(3) 220,221,222,223,224,226,229,230,231,239,240,244,245,

246,247,248,252,253,254,255,257,260,261,262,263,265,
270,271,276,278,279,280,284,285,286,287,291,293,294,
295,299 (54)

400 317,367,373, 301,302,303,306,308,309,310,311,312,313,316,318,319,
389 (4) 320,323,325,326,327,330,333,334,335,336,340,341,342,

343,344,348,349,350,351,352,353,357,358,359,365,366,
368,369,371,372,374,375,376,380,381,383,382,384,386,
390,391,395,397,398,399 (58)

500 438,445,461 404,405,406,407,408,410,412,413,414,415,421,422,423,
(3) 426,429,430,431,434,436,437,439,440,442,444,446,447,

448,453,454,455,457,462,463,464,465,468,469,470,471,
472,476,477,478,479,480,485,486,487,493,494,495,496
(52)

600 503,541,553, 501,502,504,505,508,509,510,511,514,517,518,519,525,
557,582,599 526,527,532,533,534,535,536,540,542,543,544,546,548,
(6) 549,550,551,552,558,559,561,564,565,566,567,568,572,

573,574,575,580,581,583,585,589,590,591,592,596,597,
598,600 (54)

700 607,613,646, 602,604,605,606,608,609,614,615,616,621,622,623,624,
647,653,661, 629,630,631,632,636,637,638,639,645,651,654,655,656,
662,677,692 659,660,663,664,668,669,670,671,674,678,679,685,686,
(9) 687,689,693,694,695,696,700 (46)

800 701,727,733, 702,703,709,710,711,717,718,719,721,723,724,725,726,
743,757,758, 728,731,732,734,735,736,741,742,749,750,751,752,756,
773,797 (8) 759,760,761,764,765,766,767,774,775,776,777,781,782,

783,788,789,790,791,792,793,796,798,799 (49)
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Rank 1 Rank 2
900 823,829,838, 805,806,807,813,814,815,820,821,822,824,828,830,

853,863,877, 831,832,837,839,845,845,847,848,852,854,855,856,
887 (7) 860,861,862,864,866,869,870,871,876,878,879,880,

884,885,886,888,889,890,891,892,893,894,985,896
(48)

1000 901,911,933, 902,903,904,905,909,910,915,916,917,918,919,920,
941,958,959, 925,926,927,934,935,942,943,948,949,950,951,952,
967,982,983, 956,957,960,965,966,973,974,975,976,980,981,984,
997,998 (11) 987,988,989,990,991,992,995,999 (44)

1100 1013,1061, 1003,1005,1006,1007,1008,1012,1014,1015,1016,1020,
1063,1069, 1021,1022,1023,1025,1028,1029,1030,1031,1037,1038,
1076,1087, 1039,1040,1044,1045,1046,1047,1048,1052,1053,1054,
1093 (7) 1055,1057,1060,1062,1070,1071,1073,1077,1078,1079,

1080,1081,1084,1085,1086,1094,1095 (47)
1200 1108,1109, 1101,1102,1103,1104,1105,1110,1111,1112,1113,1116,

1117,1142, 1118,1119,1120,1122,1125,1126,1127,1131,1133,1134,
1157,1158, 1135,1136,1140,1141,1143,1144,1145,1146,1148,1149,
1167,1172, 1150,1151,1154,1155,1159,1164,1166,1169,1173,1174,
1181 (9) 1175,1176,1178,1180,1182,1183,1185,1186,1189,1190,

1191,1195,1196,1197,1198,1199 (45)
1300 1213,1223, 1201,1204,1205,1206,1207,1208,1212,1214,1215,1217,

1229,1231, 1221,1222,1224,1230,1232,1233,1236,1239,1240,1241,
1237,1238, 1242,1244,1245,1246,1247,1248,1249,1253,1254,1255,
1262,1268, 1261,1263,1264,1270,1271,1272,1276,1278,1280,1282,
1277,1279, 1285,1287,1292,1293,1294,1295,1300 (47)
1286 (11)

1400 1317,1318, 1301,1302,1303,1304,1305,1308,1309,1310,1311,1320,
1319,1327, 1321,1325,1326,1330,1332,1333,1334,1335,1336,1339,
1366,1367, 1340,1341,1342,1343,1344,1346,1349,1350,1351,1357,
1373,1381, 1358,1359,1360,1364,1365,1368,1372,1374,1375,1376,
1382 (9) 1379,1383,1384,1386,1387,1389,1390,1391,1392,1393,

1396,1397,1398,1399,1400 (55)
1500 1413,1423, 1404,1405,1406,1407,1408,1411,1412,1414,1415,1419,

1429,1439, 1421,1422,1428,1430,1431,1432,1434,1436,1437,1438,
1446,1447, 1443,1445,1454,1455,1460,1461,1463,1464,1469,1470,
1453,1462, 1472,1476,1479,1482,1484,1485,1486,1488,1493,1494,
1468,1471, 1495,1496,1500 (43)
1477,1478,
1487,1492
(14)

1600 1509,1527, 1501,1502,1503,1504,1510,1511,1517,1518,1519,1520,
1535,1543, 1524,1525,1526,1528,1532,1533,1534,1536,1541,1542,
1549,1556, 1544,1550,1551,1558,1560,1561,1564,1565,1566,1567,
1557,1559, 1573,1575,1580,1581,1588,1589,1590,1591,1592,1595,
1574,1582, 1596,1599 (42)
1583,1597,
1598 (13)
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Rank 1 Rank 2
1700 1607,1613, 1605,1606,1610,1614,1615,1616,1620,1623,1624,1628,

1621,1622, 1629,1630,1631,1632,1633,1635,1638,1640,1645,1646,
1637,1639, 1647,1648,1649,1651,1652,1653,1654,1656,1659,1660,
1655,1663, 1661,1662,1666,1669,1670,1671,1677,1678,1679,1684,
1685,1693 1686,1687,1688,1692,1694,1695 (46)
(10)

1800 1718,1726, 1701,1702,1703,1704,1705,1709,1710,1711,1716,1717,
1733,1741, 1719,1720,1724,1725,1727,1731,1734,1735,1736,1742,
1752,1759, 1743,1744,1745,1746,1748,1749,1750,1751,1756,1757,
1780,1781, 1758,1760,1762,1765,1766,1767,1768,1770,1773,1774,
1783,1789 1775,1776,1782,1784,1785,1788,1790,1791,1792,1794,
(10) 1797,1798,1799 (53)

1900 1823,1837, 1805,1806,1807,1812,1813,1814,1815,1816,1820,1821,
1844,1847, 1822,1828,1829,1830,1831,1838,1839,1845,1846,1848,
1853,1861, 1852,1854,1855,1856,1858,1860,1862,1863,1869,1870,
1871,1877, 1872,1876,1879,1880,1884,1885,1886,1887,1888,1892,
1878 (9) 1893,1894,1895,1896 (44)

2000 1901,1902, 1903,1904,1908,1909,1910,1911,1912,1916,1917,1918,
1933,1942, 1919,1920,1925,1926,1927,1934,1935,1939,1940,1941,
1949,1951, 1943,1944,1948,1950,1957,1965,1966,1967,1971,1972,
1958,1959, 1974,1975,1976,1980,1981,1982,1983,1984,1989,1990,
1973,1997, 1991,1995,1998,2000 (44)
1999 (11)

2100 2005,2012, 2004,2006,2007,2008,2009,2013,2014,2015,2016,2020,
2022,2029, 2021,2023,2030,2031,2032,2034,2035,2036,2037,2038,
2053,2063, 2039,2040,2044,2045,2046,2047,2054,2055,2056,2059,
2069,2077, 2061,2062,2068,2070,2071,2072,2076,2079,2085,2086,
2078,2087 2093,2094,2095,2100 (44)
(10)

2200 2127,2134, 2101,2102,2103,2104,2108,2109,2110,2111,2113,2117,
2141,2143, 2118,2119,2125,2126,2128,2130,2132,2133,2135,2136,
2157,2164, 2139,2140,2142,2144,2145,2149,2150,2151,2154,2158,
2167,2173, 2159,2160,2165,2166,2168,2170,2172,2174,2175,2176,
2182,2183 2181,2184,2189,2190,2191,2192,2195,2196,2197,2198,
(10) 2199,2200 (52)

2300 2206,2207, 2201,2204,2205,2208,2214,2223,2229,2230,2231,2232,
2213,2215, 2236,2238,2244,2245,2247,2249,2254,2255,2256,2257,
2221,2222, 2260,2261,2262,2264,2268,2269,2270,2271,2272,2277,
2228,2237, 2279,2282,2285,2286,2288,2292,2293,2294,2295,2296,
2239,2246, 2298,2300 (42)
2253,2263,
2278,2287
(14)
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Rank 1 Rank 2
2400 2302,2309, 2301,2303,2306,2310,2313,2318,2319,2320,2324,2325,

2311,2317, 2327,2329,2332,2334,2337,2341,2343,2349,2350,2351,
2323,2326, 2356,2358,2359,2360,2364,2365,2366,2367,2368,2373,
2328,2333, 2374,2375,2379,2382,2384,2385,2388,2390,2391,2392,
2335,2342, 2397,2398,2400 (43)
2357,2381,
2383,2389,
2396,2399
(16)

2500 2413,2421, 2405,2406,2407,2408,2414,2415,2416,2418,2420,2424,
2422,2423, 2429,2430,2431,2432,2434,2436,2438,2439,2445,2446,
2428,2437, 2455,2456,2460,2464,2465,2469,2470,2471,2478,2479,
2447,2452, 2484,2485,2488,2492,2494,2496 (36)
2453,2454,
2461,2462,
2463,2477,
2486,2487,
2493,2495

(18)
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