Honam Mathematical J. 32 (2010), No. 1, pp. 131-139

SKELETONS OF HYPER MV-ALGEBRAS

Min Su Kang

Abstract

Several types of skeletons in a hyper MV-algebra are introduced, and their relations are investigated.

1. Introduction

In order to provide an algebraic proof of completeness theorem of infinite valued Lukasewicz propositional calculus, Chang [1] introduced the notion of MV-algebras. The hyper structure theory was introduced by Marty [5] at 8th congress of Scandinavian Mathematicians in 1934. Since then many researchers have worked in these areas. Recently in [3], Ghorbani et al. applied the hyper structure to MV-algebras and introduced the concept of a hyper MV-algebra which is a generalization of an MV-algebra and investigated some related results. Torkzadeh and Ahadpanah [6] discussed hyper MV-ideals in hyper MV-algebras. Jun et al. [4] studied hyper MV-deductive systems in hyper MV-algebras. In this paper, we introduce several types of skeletons in hyper MV-algebras, and investigate their relations.

2. Preliminaries

DEFINITION 2.1. [2] A hyper MV-algebra is a nonempty set M endowed with a hyper operation " \oplus ", a unary operation "*" and a constant "0" satisfying the following axioms:

(a1) $x \oplus (y \oplus z) = (x \oplus y) \oplus z$, (a2) $x \oplus y = y \oplus x$, (a3) $(x^*)^* = x$, (a4) $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x$, (a5) $0^* \in x \oplus 0^*$,

Received December 29, 2009. Accepted March 8, 2010.

Keywords: Hyper MV-algebra, (weak) Hyper MV-skeleton, (\subseteq, \in) -skeleton, (\gg, \in) -skeleton, (\ll^*, \in) -skeleton, (strong) (\subseteq^*, \in) -skeleton

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 06D35, 03G25.

Min Su Kang

(a6) $0^* \in x \oplus x^*$, (a7) $x \ll y, y \ll x \Rightarrow x = y$

for all $x, y, z \in M$, where $x \ll y$ is defined by $0^* \in x^* \oplus y$.

For every subsets A and B of M, we define

$$\begin{split} A \ll B \ \Leftrightarrow \ (\exists \, a \in A) \, (\exists \, b \in B) \, (a \ll b), \\ A \oplus B = \bigcup_{a \in A, b \in B} a \oplus b. \end{split}$$

We also define $0^* = 1$ and $A^* = \{a^* \mid a \in A\}$. The notation $x \ll y$ and $A \ll B$ will be also written as $y \gg x$ and $B \gg A$, respectively.

PROPOSITION 2.2. [2] Every hyper MV-algebra M satisfies the following assertions:

(b1) $(A \oplus B) \oplus C = A \oplus (B \oplus C),$ (b2) $0 \ll x, \quad x \ll 1,$ (b3) $x \ll x,$ (b4) $x \ll y \Rightarrow y^* \ll x^*,$ (b5) $A \ll B \Rightarrow B^* \ll A^*,$ (b6) $A \ll A,$ (b7) $A \subseteq B \Rightarrow A \ll B,$ (b8) $x \ll x \oplus y, \quad A \ll A \oplus B,$ (b9) $(A^*)^* = A,$ (b10) $0 \oplus 0 = \{0\},$ (b11) $x \in x \oplus 0,$ (b12) $y \in x \oplus 0 \Rightarrow y \ll x,$ (b13) $y \oplus 0 = x \oplus 0 \Rightarrow x = y$

for all $x, y, z \in M$ and subsets A, B and C of M.

DEFINITION 2.3. [2] A nonempty subset S of a hyper MV-algebra M is called a hyper MV-subalgebra of M if S is a hyper MV-algebra under the hyper operation " \oplus " and the unary operation "*" on M.

LEMMA 2.4. [2] A nonempty subset S of a hyper MV-algebra M is hyper MV-subalgebra of M if and only if $x^* \in S$ and $x \oplus y \subseteq S$ for all $x, y \in S$.

DEFINITION 2.5. [4] A nonempty subset D of M is called a *weak* hyper MV-deductive system of M if it satisfies:

 $\begin{array}{ll} (c1) & 0 \in D, \\ (c2) & (\forall x, y \in M)((x^* \oplus y)^* \subseteq D, \, y \in D \, \Rightarrow \, x \in D). \end{array}$

Skeletons of hyper MV-algebras

$\oplus \mid 0$	a	b	1	$x \mid x^*$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\{ \begin{matrix} \{0,a\} \\ \{0,a\} \\ \{0,a,b,1\} \end{matrix}$	$\{ \begin{array}{c} \{0,a,b\} \\ \{0,a,b,1\} \\ \{0,a,b,1\} \end{array}$	$ \begin{array}{c} \{0, a, b, 1\} \\ \{0, a, b, 1\} \\ \{0, a, b, 1\} \end{array} $	$\begin{array}{c c} 0 & 1 \\ a & b \\ b & a \end{array}$
$1 \mid \{0, a, b, 1\}$	$\{0, a, b, 1\}$	$\{0, a, b, 1\}$	$\{0, a, b, 1\}$	1 0

TABLE 1. \oplus -multiplication and unary operation

DEFINITION 2.6. [4] A non-empty subset D of M is called a *hyper* MV-deductive system of M if it satisfies (c1) and

(c3) $(\forall x, y \in M)((x^* \oplus y)^* \ll D, y \in D \Rightarrow x \in D).$

3. Skeletons of hyper MV-algebras

In what follows let M denote a hyper MV-algebra unless otherwise specified.

DEFINITION 3.1. A nonempty subset K of a hyper MV-algebra M is called a (\subseteq, \in) -skeleton of M if it satisfies:

 $\begin{array}{ll} (\mathrm{d}1) & 1 \in K, \\ (\mathrm{d}2) & (\forall x \in K) (\forall y \in M) (x^* \oplus y \subseteq K \ \Rightarrow \ y \in K). \end{array}$

EXAMPLE 3.2. Let $M = \{0, a, b, 1\}$ be a set with the hyper operation " \oplus " and the unary operation "*" which are given by Table 1. Then $(M, \oplus, *, 0)$ is a hyper MV-algebra. It is easy to check that $K_1 := \{1, a\}, K_2 := \{1, b\}$ and $K_3 := \{1, a, b\}$ are (\subseteq, \in) -skeletons of M.

THEOREM 3.3. If D is a weak hyper MV-deductive system of M, then the set

$$D^* := \{a^* \mid a \in D\}$$

is a (\subseteq, \in) -skeleton of M.

Proof. Obviously, $1 \in D^*$. Let $x \in D^*$ and $y \in M$ be such that $x^* \oplus y \subseteq D^*$. Using (a2) and (a3), we have

$$((y^*)^* \oplus x^*)^* = (y \oplus x^*)^* = (x^* \oplus y)^* \subseteq D.$$

It follows from (c2) that $y^* \in D$ so that $y \in D^*$. Hence D^* is a (\subseteq, \in) -skeleton of M.

Min Su Kang

\oplus	0	a	b	1	x	x^*
0	{0}	$\{0, a\}$	$\{0,b\}$	$\{0, a, b, 1\}$	0	1
a	$\{0,a\}$	$\{a\}$	$\{0, a, b, 1\}$	$\{0, a, b, 1\}$	a	b
b	$\{0, b\}$	$\{0, a, b, 1\}$	$\{0, a, b, 1\}$	$\{0, a, b, 1\}$	b	a
1	$\{0, a, b, 1\}$	$\{0, a, b, 1\}$	$\{0, a, b, 1\}$	$\{0,a,b,1\}$	1	0

TABLE 2. \oplus -multiplication and unary operation

THEOREM 3.4. Let M be a hyper MV-algebra satisfying the following condition:

$$(3.1) \qquad (\forall x, y \in M) (y \in x \oplus y)$$

Then every subset of M containing 1 is a (\subseteq, \in) -skeleton of M.

Proof. Let K be a subset of M containing 1, and let $x, y \in M$ be such that $x^* \oplus y \subseteq K$ and $x \in K$. Assume that $y \notin K$. Then $y \in x^* \oplus y$ by (3.1), and so $x^* \oplus y \nsubseteq K$. This is a contradiction, and therefore $y \in K$, proving that K is a (\subseteq, \in) -skeleton of M.

THEOREM 3.5. If K_1 and K_2 are (\subseteq, \in) -skeletons of a hyper MV-algebra M, then so is $K_1 \cap K_2$.

Proof. Straightforward.

The following example shows that the union of (\subseteq, \in) -skeletons of a hyper MV-algebra M is not a (\subseteq, \in) -skeletons of a hyper MV-algebra M.

DEFINITION 3.6. A nonempty subset K of a hyper MV-algebra M is called a (\gg, \in) -skeleton of M if it satisfies (d1) and (d3) $(\forall x \in K)(\forall y \in M)(x^* \oplus y \gg K \Rightarrow y \in K).$

EXAMPLE 3.7. Let $M = \{0, a, b, 1\}$ be a set with the hyper operation " \oplus " and the unary operation "*" which are given by Table 2. Then $(M, \oplus, *, 0)$ is a hyper MV-algebra. It is easy to check that $K_2 := \{1, b\}$ is a (\gg, \in) -skeleton of M, but $K_1 := \{1, a\}$ is not a (\gg, \in) -skeleton of M since $a^* \oplus b = b \oplus b = \{0, a, b, 1\} \gg \{1, a\}$.

PROPOSITION 3.8. Every (\gg, \in) -skeleton K of M satisfies the following condition:

$$(3.2) \qquad (\forall x \in K) \ (\forall y \in M) \ (x \ll y \Rightarrow y \in K).$$

Proof. Let $x, y \in M$ be such that $x \ll y$ and $x \in K$. Then $1 \in x^* \oplus y$, and so $x^* \oplus y \gg K$ by (d1) and (b3). It follows from (d3) that $y \in K$. \Box

The following example shows that a (\subseteq, \in) -skeleton K of M may not satisfy the condition (3.2).

EXAMPLE 3.9. Consider a hyper MV-algebra M in Example 3.2. Then $K_1 := \{1, a\}$ is a (\subseteq, \in) -skeleton of M which does not satisfy (3.2).

Let M satisfy the condition (3.1) and let K be a subset of M containing 1. Then K may not be a (\gg, \in) -skeleton of M as seen in Example 3.7.

THEOREM 3.10. Every (\gg, \in) -skeleton is a (\subseteq, \in) -skeleton.

Proof. Let K be a (\gg, \in) -skeleton of M. Assume that $x^* \oplus y \subseteq K$ for all $x \in K$ and $y \in M$. Then $a \ll a$ for all $a \in x^* \oplus y$, and so $x^* \oplus y \gg K$. Using (d3), we have $y \in K$. Hence K is (\subseteq, \in) -skeleton of M.

THEOREM 3.11. If D is a hyper MV-deductive system of M, then the set

$$D^* := \{a^* \mid a \in D\}$$

is a (\gg, \in) -skeleton of M.

Proof. Obviously, $1 \in D^*$. Let $x \in D^*$ and $y \in M$ be such that $x^* \oplus y \gg D^*$. Then $((y^*)^* \oplus x^*)^* = (x^* \oplus y)^* \ll D$ by (a2), (a3), (b5) and (b9). It follows from (c3) that $y^* \in D$ so from (a3) that $y \in D^*$. Hence D^* is a (\gg, \in) -skeleton of M.

THEOREM 3.12. If K_1 and K_2 are (\gg, \in) -skeletons of a hyper MV-algebra M, then so is $K_1 \cap K_2$.

Proof. Straightforward.

The following example shows that the union of (\gg, \in) -skeletons of a hyper MV-algebra M is not a (\gg, \in) -skeletons of a hyper MV-algebra M.

DEFINITION 3.13. A nonempty subset K of a hyper MV-algebra M is called a (\ll^* , \in)-*skeleton* of M if it satisfies (d1) and

 $(\mathrm{d}4) \ (\forall x \in K) (\forall y \in M \setminus \{0\}) (x^* \oplus y \ll K^* \ \Rightarrow \ y \in K).$

EXAMPLE 3.14. For a hyper MV-algebra M, the set $K := M \setminus \{0\}$ is a (\ll^*, \in) -skeleton of M.

EXAMPLE 3.15. Let $M = \{0, b, 1\}$ be a set with the hyper operation " \oplus " and the unary operation "*" which are given by Table 3. Then $(M, \oplus, ^*, 0)$ is a hyper MV-algebra. It is easy to check that $K_1 := \{1\}$ and $K_2 := \{1, b\}$ are (\ll^*, \in) -skeletons of M. But $K := \{1, 0\}$ is not a (\ll^*, \in) -skeleton of M since $1^* \oplus b = \{b\} \ll K^*$ and $b \notin K^*$.

Min Su Kang

\oplus	0	b	1	$x \mid x^*$	_
0	{0}	$\{b\} \\ \{0, b, 1\} \\ \{0, b, 1\}$	{1}	$egin{array}{c c} 0 & 1 \\ b & b \\ 1 & 0 \end{array}$	_
b	$\{b\}$	$\{0, b, 1\}$	$\{0, b, 1\}$	$b \mid b$	
1	$\{1\}$	$\{0,b,1\}$	$\{1\}$	$1 \mid 0$	

TABLE 3. \oplus -multiplication and unary operation

REMARK 3.16. Let K be a proper subset of a hyper MV-algebra M. Then there exists $y \in M \setminus K$. If K contains 0, then $1 \in K^*$ and so $x^* \oplus y \ll K^*$ for all $x \in K$. This shows that every (\ll^*, \in) -skeleton does not contain 0.

REMARK 3.17. There is no relation between a (\subseteq, \in) -skeleton and a (\ll^*, \in) -skeleton. In fact, $K_1 := \{1, a\}$ in Example 3.2 is a (\subseteq, \in) skeleton of M. But it is not a (\ll^*, \in) -skeleton of M. Also, $K_2 := \{1, b\}$ in Example 3.15 is a (\ll^*, \in) -skeleton of M which is not a (\subseteq, \in) -skeleton of M.

REMARK 3.18. A (\gg , \in)-skeleton may not be a (\ll^* , \in)-skeleton. For example, $K_1 := \{1, b\}$ in Example 3.7 is a (\gg , \in)-skeleton of M which is not a (\ll^* , \in)-skeleton of M.

THEOREM 3.19. If K_1 and K_2 are (\ll^*, \in) -skeletons of a hyper *MV*-algebra *M*,then so is $K_1 \cap K_2$.

Proof. Straightforward.

The following example shows that the union of (\ll^*, \in) -skeletons of a hyper MV-algebra M is not a (\ll^*, \in) -skeletons of a hyper MV-algebra M.

DEFINITION 3.20. A nonempty subset K of a hyper MV-algebra M is called a *hyper MV-skeleton* of M if it satisfies

(d5) $(\forall x \in K) (\forall y \in M) (x^* \oplus y \ll K \Rightarrow y \in K).$

EXAMPLE 3.21. Let $M = \{0, a, b, 1\}$ be a set with the hyper operation " \oplus " and the unary operation "*" which are given by Table 4. Then $(M, \oplus, *, 0)$ is a hyper MV-algebra. It is easy to check that $K_a := \{a\}$ is a hyper MV-skeleton of M. But $K_b := \{b\}$ is not a hyper MV-skeleton of M since $b^* \oplus a = a \oplus a = \{0, a\} \ll \{b\} = K_b$ and $a \notin K_b$.

DEFINITION 3.22. A nonempty subset K of a hyper MV-algebra M is called a *weak hyper MV-skeleton* of M if it satisfies

Skeletons of hyper MV-algebras

\oplus	0	a	b	1	$x \mid$	<i>x</i> *
0	{0}	$\{0, a\}$	$\{b\}$	$\{b, 1\}$	0	1
a	$\{0,a\}$	$\{0,a\}$	$\{b,1\}$	$\{b,1\}$	a	b
b	$\{b\}$	$\{b,1\}$	$\{b,1\}$	$\{b,1\}$	b	a
1	$\{b,1\}$	$\{b,1\}$	$\{b,1\}$	$\{b,1\}$	$1 \mid$	0

TABLE 4. \oplus -multiplication and unary operation

(d6) $(\forall x \in K) (\forall y \in M) ((x^* \oplus y) \cap K \neq \emptyset \Rightarrow y \in K).$

LEMMA 3.23. For every subset K of a hyper MV-algebra M, we have

$$(3.3) \qquad (\forall x, y \in M) \, ((x^* \oplus y) \cap K \neq \emptyset \Rightarrow x^* \oplus y \ll K).$$

Proof. Straightforward.

THEOREM 3.24. Every hyper MV-skeleton is a weak hyper MV-skeleton.

Proof. It follows immediately from Lemma 3.23. \Box

The following example shows that the converse of Theorem 3.24 may not be true.

EXAMPLE 3.25. Consider a hyper MV-algebra M which is given in Example 3.21. Then $K := \{b, 1\}$ is a weak hyper MV-skeleton of M, but it is not a hyper MV-skeleton of M since $b^* \oplus a = \{0, a\} \ll K$ and $a \notin K$.

THEOREM 3.26. If K_1 and K_2 are (weak) hyper MV-skeletons of a hyper MV-algebra M, then so is $K_1 \cap K_2$.

Proof. Straightforward.

The following example shows that the union of (weak) hyper MV-skeletons of a hyper MV-algebra M is not a (weak) hyper MV-skeleton of a hyper MV-algebra M.

DEFINITION 3.27. A nonempty subset K of a hyper MV-algebra M is called a *strong* (\subseteq^*, \in)-*skeleton* of M if it satisfies (d1) and

(d7) $(\forall x \in K) \ (\forall y \in M) \ (x^* \oplus y \subseteq K^* \Rightarrow y \in K).$

Min Su Kang

\oplus	0	a	b	1	$x \mid x^*$
0	{0}	$\{0, a, b\}$	$\{0,b\}$	$\{0, a, b, 1\}$	$0 \mid 1$
a	$\{0, a, b\}$	$\{0,1\}$	$\{0, a, b, 1\}$	$\{0, a, b, 1\}$	$a \mid b$
b	$\{0,b\}$	$\{0, a, b, 1\}$	$\{b\}$	$\{0, a, b, 1\}$	$egin{array}{c c} b & a \\ 1 & 0 \end{array}$
1	$\{0,a,b,1\}$	$\{0,a,b,1\}$	$\{0,a,b,1\}$	$\{0, a, b, 1\}$	1 0

TABLE 5. \oplus -multiplication and unary operation

EXAMPLE 3.28. Let $M = \{0, a, b, 1\}$ be a set with the hyper operation " \oplus " and the unary operation "*" which are given by Table 5. Then $(M, \oplus, *, 0)$ is a hyper MV-algebra. It is easy to check that $K_1 := \{0, 1\}$ is a strong (\subseteq^* , \in)-skeleton of M, but $K_2 := \{1\}$ is not a strong (\subseteq^* , \in)-skeleton of M since $1^* \oplus 0 = \{0\} \subseteq K_2^*$ and $0 \notin K_2$.

DEFINITION 3.29. A nonempty subset K of a hyper MV-algebra M is called a (\subseteq^*, \in) -skeleton of M if it satisfies (d1) and

 $(\mathrm{d}8) \ (\forall x \in K) \ (\forall y \in M \setminus \{0\}) \ (x^* \oplus y \subseteq K^* \ \Rightarrow \ y \in K).$

EXAMPLE 3.30. Let $(M, \oplus, *, 0)$ be a hyper MV-algebra which is given in Example 3.28. Then $K := \{a, b, 1\}$ is a (\subseteq^*, \in) -skeleton of M. But $K_a := \{a, 1\}$ is not a (\subseteq^*, \in) -skeleton of M since $a^* \oplus b = \{b\} \subseteq K_a^*$ but $b \notin K_a$.

Obviously, if M is a hyper MV-algebra, then $M \setminus \{0\}$ is a (\subseteq^*, \in) -skeleton of M. Note that every strong (\subseteq^*, \in) -skeleton is a (\subseteq^*, \in) -skeleton, but the converse is not true as seen in the following example.

EXAMPLE 3.31. Let $(M, \oplus, *, 0)$ be a hyper MV-algebra which is given in Example 3.28. Then $K := \{a, b, 1\}$ is a (\subseteq^*, \in) -skeleton of M, but it is not a strong (\subseteq^*, \in) -skeleton of M since $a^* \oplus 0 = \{0, b\} \subseteq K^*$ but $0 \notin K$.

Using (d7), we know that every (\ll^* , \in)-skeleton is a (\subseteq^* , \in)-skeleton. But the converse may not hold as seen in the following example.

EXAMPLE 3.32. Let $(M, \oplus, *, 0)$ be a hyper MV-algebra which is given in Example 3.28. Then $K := \{a, b, 1\}$ is a (\subseteq^*, \in) -skeleton of M. But it is not a (\ll^*, \in) -skeleton of M since $a^* \oplus 0 = \{0, b\} \ll K^*$ but $0 \notin K$.

THEOREM 3.33. If K_1 and K_2 are (strong) (\subseteq^* , \in)-skeletons of a hyper MV-algebra M, then so is $K_1 \cap K_2$.

Proof. Straightforward.

The following example shows that the union of (strong) (\subseteq^* , \in)-skeletons of a hyper MV-algebra M is not a (strong) (\subseteq^* , \in)-skeletons of M.

REMARK 3.34. There is no relation between a (\gg, \in) -skeleton and a strong (\subseteq^*, \in) -skeleton as shown by the following examples.

EXAMPLE 3.35. Let $(M, \oplus, *, 0)$ be a hyper MV-algebra which is given in Example 3.28. Then $K := \{0, 1\}$ is a strong (\subseteq^*, \in) -skeleton of M, but not a (\gg, \in) -skeleton of M since $1^* \oplus b = \{0, b\} \gg K$ but $b \notin K$.

EXAMPLE 3.36. Let M be a hyper MV-algebra which is given in Example 3.7. Then $K := \{1, b\}$ is a (\gg, \in) -skeleton of M, but not a strong (\subseteq^*, \in) -skeleton of M since $b^* \oplus 0 = \{0, a\} \subseteq K^*$, but $0 \notin K$.

REMARK 3.37. There is no relation between a (\ll^* , \in)-skeleton and a strong (\subseteq^* , \in)-skeleton as shown by the following examples.

EXAMPLE 3.38. Let $(M, \oplus, *, 0)$ be a hyper MV-algebra which is given in Example 3.28. Then $K := \{0, 1\}$ is a strong (\subseteq^*, \in) -skeleton of M, but not a (\ll^*, \in) -skeleton of M since $0^* \oplus a = \{0, a, b, 1\} \ll K^*$ but $a \notin K$.

References

- C.C. Change, Algebraic analysis of many valued logic, Transactions American Mathematical Society, 88 (1958), 476–490.
- [2] Sh. Ghorbani, On hyper MV-algebras, Ph. D. thesis, Shahbid Bahonar University of Kerman, 2007.
- [3] Sh. Ghorbani, A. Hasankhani and E. Eslami, *Hyper MV-algerbas*, Set-Valued Math. Appl. (to appear).
- [4] Y. B. Jun, M. S. Kang and H. S. Kim, Hyper MV-deductive systems of hyper MV-algebras, Internat. J. Fuzzy Systems (submitted).
- [5] F. Marty, Sur une generalization de la notion de groups, 8th congress Math. Scandinaves, Stockholm, (1934), 45–49.
- [6] L. Torkzadeh and A. Ahadpanah, Hyper MV-ideals in hyper MV-algerbas, Math. Logic. Quaterly (submitted).

Min Su Kang Department of Mathematics Hanyang University Seoul 133-791, Korea e-mail : sinchangmyun@hanmail.net