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INCLUSION AND EXCLUSION
FOR FINITELY MANY TYPES OF PROPERTIES

Gab-Byoung Chae, Minseok Cheong, and Sang-Mok Kim

Abstract. Inclusion and exclusion is used in many papers to count
certain objects exactly or asymptotically. Also it is used to derive
the Bonferroni inequalities in probabilistic area [6]. Inclusion and
exclusion on finitely many types of properties is first used in R.
Meyer [7] in probability form and first used in the paper of McKay,
Palmer, Read and Robinson [8] as a form of counting version of
inclusion and exclusion on two types of properties. In this paper,
we provide a proof for inclusion and exclusion on finitely many types
of properties in counting version. As an example, the asymptotic
number of general cubic graphs via inclusion and exclusion formula
is given for this generalization.

1. Introduction

We begin with the definition of inclusion and exclusion (say I&E)
with one property [9]. Let U be the universal set of S0 elements, and
suppose A1, . . . , As are s subsets of U . For all integer k > 0, [k] denotes
the set {1, 2, . . . , k}. The complement of a set C of U is denoted by C.
For l = 0, . . . s, define

(1) Sl =
∑

|
⋂

i∈I

Ai|,

where the sum is over all l-subsets I of [s]. For l = 0, . . . s, let Nl be the
number of elements of U that belong to exactly l of the sets {A1, . . . , As},
that is,

(2) Nl =
∑

|
⋂

i∈I

Ai ∩
⋂

i/∈I

Āi|,
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where the sum is over all l-subsets I of [s]. By counting contribution of
each element to Nu for u = l, . . . , s, which is multi-counted for Sl, we
have

(3) Sl =
∑

l≤u≤s

(
u

l

)
Nu.

The numbers Sl and Nl are closely related and this relation is neatly
expressed in terms of ordinary generating functions

(4) S(x) =
s∑

i=0

Six
i

and

(5) N(x) =
s∑

i=0

Nix
i.

The following equation can be deduced from (3), (4), and (5).

Theorem 1.

(6) N(x + 1) = S(x)

If x is replaced by x−1 in the equality(6) and compare the coefficients,
we have a relation:

(7) Nl =
∑

0≤i≤s−l

(−1)i

(
l + i

i

)
Sl+i.

It is important to study the upper and lower bounds for Nl. Therefore
we consider truncation

(8)

∑

0≤i≤α

(−1)i

(
l + i

i

)
Sl+i

=
∑

0≤i≤α

(−1)i

(
l + i

i

) ∑

s≥u≥l+i

(
u

l + i

)
Nu.

where 0 < α ≤ s − l. Now interchange the order of summation and
obtain

(9)
∑

0≤i≤α

(−1)i

(
l + i

i

)
Sl+i =

∑

u≥l

Nu

(
u

l

) ∑

0≤i≤α

(−1)i

(
u− l

i

)

It can be seen that:

(10)
∑

0≤i≤α

(−1)i

(
u− l

i

)
=

{
(−1)α

(
u−l−1

α

)
, if u ≥ l + 1;

1, if u = l
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so

(11)

∑

0≤i≤α

(−1)i

(
l + i

i

)
Sl+i = Nl

+ (−1)α
∑

u≥l+1

Nu

(
u

l

)(
u− l − 1

α

)

Since the contribution of the sum on the right side of 11 is negative or
positive according as s is odd or even, we can have the theorem below.

Theorem 2. For l = 0, . . . s let Sl =
∑ |⋂i∈I Ai|, where the sum is

over all l-subsets I of [s], and Nl be the number of elements of U that
belong to exactly l of the sets {A1, . . . , As}. Then

(12)

∑

0≤i≤2α−1

(−1)i

(
l + i

i

)
Sl+i

≤ Nl ≤
∑

0≤i≤2α

(−1)i

(
l + i

i

)
Sl+i.

I&E with two properties as a enumeration formula is introduced by
McKay, Palmer, Read and Robinson [8] in which the following asymp-
totic estimate has been found using the equation which is similar to
(12) with two properties : Let g(2n, l1, l2) be the number of general
cubic graphs on 2n labeled vertices with l1 loops and l2 double edges.
Then for l1 l2 = o(

√
n), they find

(13) g(2n, l1, l2) = (1 + o(1))
e−2

(3!)2n
· (6n)!
23n · (3n)!

· 2l1 · 2l2

l1! · l2! .

It was used to find the total number of general cubic graphs with 2n
vertices by summing up the values g(2n, l1, l2) using equation (13) :

(14) g(2n) = (1 + o(1))
e2

(3!)2n
· (6n)!
23n · (3n)!

.

Wormald [10] first derived (14) by estimating the number of matrices
with given row and column sums and it was also derived from matrix
approximations of Bender and Canfield [1]. The formula (13) can be
derived directly by the method of I&E on two types of properties in [8],
but the proof of the inequality was omitted. The asymptotic numbers of
general cubic graphs with given connectivity [3] are obtained as a result
of (13) which may not be obtained from (14) alone without (13).

In this paper, we provide the proof for inclusion and exclusion on
finitely many types of properties in Section 2. An inequality of I&E on
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three types of properties is obtained in Section 3, which is an application
of I&E on three types of properties. We show that (13) and (14)can be
obtained directly via I&E which gives a simpler method to handle triple
edges than that of done in [3]. A generalization of the inequality of I&E
on finitely many types of properties is used to find the asymptotic num-
ber of 4-regular graphs with given connectivity derived from I&E with
five types of properties [4]. Most general graph theoretic terminologies
and notations follow [5] and we assume the basic terminologies for I&E
developed in [9] .

2. I&E for finitely many types of properties

Now we deal with k types of properties k ≥ 2. Let U be the universal
set of So elements. Let k be a positive integer where sk is the number
of subsets of U with property k. Suppose that P j

1 , . . . , P j
sj are subsets

of U with property j (j = 1, . . . , k). For integers lj with 0 ≤ lj ≤ sj

(j = 1, . . . , k) define

(15) Sl1,...,lk =
∑

∣∣∣∣∣∣
⋂

i1∈I1

P 1
i1 ∩ · · · ∩

⋂

ik∈Ik

P k
ik

∣∣∣∣∣∣

where the sum is over all lj-subsets Ij ⊂ [sj ] for j = 1, . . . , k. For 0 ≤
lj ≤ sj( j = 1, . . . , k), let Nl1,...,lk be the number of elements in U that
belong to exactly lj of the sets {P j

i }
sj

i=1 for j = 1, . . . , k. That is
(16)

Nl1,...,lk =
∑

∣∣∣∣∣∣


 ⋂

i1∈I1

P 1
i1 ∩

⋂

i1 /∈I1

P 1
i1


 ∩ · · · ∩


 ⋂

ik∈Ik

P k
ik
∩

⋂

ik /∈Ik

P k
ik




∣∣∣∣∣∣

where the sum is again over all lj-subsets Ij ⊂ [sj ] for j = 1, . . . , k.
By counting the contribution to Sl1,...,lk of each element x of U that
contributes to Nu1,...,uk

for u1 ≥ l1, . . . , uk ≥ lk, we have

(17) Sl1,...,lk =
∑

l1≤u1≤s1

...
lk≤uk≤sk

k∏

i=1

(
ui

li

)
Nu1,...,uk

.



Inclusion and Exclusion for finitely many types of properties 117

The numbers Sl1,...,lk and Nl1,...,lk are closely related and this relation is
neatly expressed in terms of ordinary generating functions

(18) S(x1, . . . , xk) =
s1∑

l1=0

· · ·
sk∑

lk=0

Sl1,...,lkxl1
1 . . . xlk

k

and

(19) N(x1, . . . , xk) =
s1∑

l1=0

· · ·
sk∑

lk=0

Nl1,...,lkxl1
1 . . . xlk

k .

Then the following proposition can be obtained from (17), (18), and (19),
respectively.

Proposition 3. S(x1, . . . , xk) and N(x1, . . . , xk) are ordinary gener-
ating functions defined as above then

(20) N(x1 + 1, . . . , xk + 1) = S(x1, . . . , xk).

If we set x1 = · · · = xk = −1 in (20), we obtain

(21) N(0, . . . , 0) = S(−1, . . . ,−1).

This is the number of elements in U that belong to none of the
sets P j

1 , · · · , P j
sj for j = 1, . . . , k. Now if x1, . . . , xk are replaced by

x1−1, . . . , xk−1 in (20) respectively, we have, by comparing coefficients
of xl1 . . . xlk ;

(22) Nl1,...,lk =
∑

0≤v1≤s1−l1
...

0≤vk≤sk−lk

(−1)v1+···+vk

k∏

i=1

(
li + vi

vi

)
Sl1+v1,...,lk+vk

.

Then we consider the truncation
(23)

∑

0≤v1≤α1

...
0≤vk≤αk

(−1)v1+···+vk

k∏

i=1

(
li + vi

vi

)
Sl1+v1,...,lk+vk

=
∑

0≤v1≤α1

...
0≤vk≤αk

(−1)v1+···+vk

k∏

i=1

(
li + vi

vi

) ∑

l1+v1≤u1

...
lk+vk≤uk

k∏

i=1

(
ui

li + vi

)
Nu1,...uk

,
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where 0 < αi ≤ si− li and the right side has been obtained by substitu-
tion of (17). Now we interchange the order of summation and obtain
(24)

∑

0≤v1≤α1

...
0≤vk≤αk

(−1)v1+···+vk

k∏

i=1

(
li + vi

vi

)
Sl1+v1,...,lk+vk

=
∑

l1≤u1

...
lk≤uk

Nu1,...uk

k∏

i=1

(
ui

li

) ∑

0≤v1≤α1

...
0≤vk≤αk

(−1)v1+···+vk

k∏

i=1

(
ui − li

vi

)
.

It can be seen that:

∑

0≤v1≤α1

...
0≤vk≤αk

(−1)v1+···+vk

k∏

i=1

(
ui − li

vi

)

(25)
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=





1, if ui = li for all i.
(−1)α1

(
u1−l1−1

α1

)
, if u1 ≥ l1 + 1 and ui = li

for all i 6= 1;
...

(−1)αk
(
uk−lk−1

αk

)
, if uk ≥ lk + 1 and ui = li

for all i 6= k;
(−1)α1+α2

(
u1−l1−1

α1

)(
u2−l2−1

α2

)
, if u1 ≥ l1 + 1, u2 ≥ l2 + 1

and ui = li

for all i 6= 1 and 2;
...

(−1)αk−1+αk
(
uk−1−lk−1−1

αk−1

)(
uk−lk−1

αk

)
, if uk−1 ≥ lk−1 + 1,

uk ≥ lk + 1 and ui = li

for all i 6= k − 1 and k;
(−1)α1+α2+α3

(
u1−l1−1

α1

)(
u2−l2−1

α2

)(
u3−l3−1

α3

)
, if u1 ≥ l1 + 1, u2 ≥ l2 + 1,

u3 ≥ l3 + 1 and ui = li

for all i 6= 1, 2 and 3;
...

(−1)α1+···+αk
∏k

i=1

(
ui−li−1

αi

)
, if ui ≥ li + 1

for all i = 1, . . . , k.

Thus we have

∑

0≤v1≤α1

...
0≤vk≤αk

(−1)v1+···+vk

k∏

i=1

(
li + vi

vi

)
Sl1+v1,...,lk+vk

= Nl1,...,lk

+ (−1)α1
∑

l1+1≤u1

Nu1,l2,...lk

(
u1

l1

)(
u1 − l1 − 1

α1

)

...
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+ (−1)αk
∑

lk+1≤uk

Nl1,...,lk−1,uk

(
uk

lk

)(
uk − lk − 1

αk

)

+ (−1)α1+α2
∑

l1+1≤u1
l2+1≤u2

Nu1,u2,l3,...lk

(
u1

l1

)(
u2

l2

)(
u1 − l1 − 1

α1

)(
u2 − l2 − 1

α2

)

...

+ (−1)αk−1+αk
∑

lk−1+1≤uk−1
lk+1≤uk

Nl1,...,lk−2,uk−1,uk

(
uk−1

lk−1

)(
uk

lk

)

(
uk−1 − lk−1 − 1

αk−1

)(
uk − lk − 1

αk

)

...

+ (−1)α1+α2+α3
∑

l1+1≤u1
l2+1≤u2
l3+1≤u3

Nu1,u2,u3,l4,...lk

3∏

i=1

(
ui

li

)(
ui − li − 1

αi

)

...

+ (−1)α1+···+αk
∑

l1+1≤u1

...
lk+1≤uk

Nu1,...,uk

k∏

i=1

(
ui

li

)(
ui − li − 1

αi

)
.

(26)

If we set all the values of {αi|i = 1, ..., k} to be even in (26), we have an
upper bound for Nl1,...,lk . On the other hand, the corresponding lower
bound is not easy to obtain.

Now we deal with the main theorem. We state a trivial result
which is used for the proof of our main theorem.

Lemma 4. Suppose α, n and k are positive integers. If α ≥ n(k−1)−1
k ,

for k < n, we have

(27)
(

n

α

)
≥ (k − 1)

(
n

α + 1

)
.

Theorem 5. Suppose that P j
1 , . . . , P j

sj are subsets of U with property
j (j = 1, . . . , k). For integers lj with 0 ≤ lj ≤ sj (j = 1, . . . , k) define
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Sl1,...,lk =
∑∣∣∣⋂i1∈I1

P 1
i1
∩ · · · ∩⋂

ik∈Ik
P k

ik

∣∣∣ where the sum is over all lj-

subsets Ij ⊂ [sj ] for j = 1, . . . , k. And for 0 ≤ lj ≤ sj( j = 1, . . . , k),
let Nl1,...,lk be the number of elements in U that belong to exactly lj of

the sets {P j
i }

sj

i=1 for j = 1, . . . , k. Then there are {ᾱi}, i = 1, . . . , k with

ᾱi > (si−li−1)(k−1)−1
k such that

(28)
∑

0≤v1≤ᾱ1

...
0≤vk≤ᾱk

(−1)v1+···+vk

k∏

i=1

(
li + vi

vi

)
Sl1+v1,...,lk+vk

≤ Nl1,...,lk ≤
∑

0≤v1≤2α1

...
0≤vk≤2αk

(−1)v1+···+vk

k∏

i=1

(
li + vi

vi

)
Sl1+v1,...,lk+vk

.

Proof. Since contribution of the sums on the right side of (17) is
positive if all α′is(i = 1, ..., k) are even, we have the upper bound. For
the lower bound, for convenient, assume that k is even(when k is odd
we can do similarly). Let
(29)

Φ1
α1

=
∑

l1+1≤u1

Nu1,l2,...,lk

(
u1

l1

)(
u1 − l1 − 1

α1

)
,

...

Φ1
αk

=
∑

lk+1≤uk

Nl1...,lk−1,uk

(
uk

lk

)(
uk − lk − 1

αk

)
,

Φ2
α1,α2

=
∑

l1+1≤u1
l2+1≤u2

Nu1,u2,l3,...,lk

(
u1

l1

)(
u2

l2

)(
u1 − l1 − 1

α1

)(
u2 − l2 − 1

α2

)
,

...

Φ2
αk−1,αk

=
∑

lk−1+1≤uk−1
lk+1≤uk

Nl1,...,lk−2,uk−1,uk

(
uk−1

lk−1

)(
uk

lk

)(
uk−1 − lk−1 − 1

αk−1

)(
uk − lk − 1

αk

)



122 G.-B. Chae, Minseok Cheong, and Sang-Mok Kim

Φ3
α1,α2,α3

=
∑

l1+1≤u1
l2+1≤u2
l3+1≤u3

Nu1,u2,u3,l4,...lk

3∏

i=1

(
ui

li

)(
ui − li − 1

αi

)
,

...

Φ3
αk−2,αk−1,αk

=
∑

lk−2+1≤uk−2
lk−1+1≤uk−1
lk+1≤uk

Nl1,...,lk−3,uk−2,uk−1,uk

k∏

i=k−2

(
ui

li

)(
ui − li − 1

αi

)
,

...

Φk
α1,...,αk

=
∑

l1+1≤u1

...
lk+1≤uk

Nu1,...,uk

k∏

i=1

(
ui

li

)(
ui − li − 1

αi

)
.

Note that there are
(
k
2

)
terms of the form Φ2

αi1
,αi2

,
(
k
3

)
terms of the

form Φ3
αi1

,αi2
,αi3

, . . . , and Φk
α1,...,αk

is the only one term in the form of

Φk
α1,...,αk

since
(
k
k

)
= 1. Then (26) can be written:

(30)
∑

0≤v1≤α1

...
0≤vk≤αk

(−1)v1+···+vk

k∏

i=1

(
li + vi

vi

)
Sl1+v1,...,lk+vk

= Nl1,...,lk + (−1)α1Φ1
α1

+ · · ·+ (−1)αkΦ1
αk

+ (−1)α1+α2Φ2
α1,α2

+ (−1)α1+α3Φ2
α1,α3

+ . . .

+ (−1)αk−2+αkΦ2
αk−2,αk

+ (−1)αk−1+αkΦ2
αk−1,αk

+ (−1)α1+α2+α3Φ3
α1,α2,α3

+ (−1)α1+α2+α4Φ3
α1,α2,α4

+ . . .

+ (−1)αk−2+αk−1+αkΦ3
αk−2,αk−1,αk

+ (−1)α1+α2+α3+α4Φ4
α1,α2,α3,α4

+ . . .

...

+ (−1)α1+···+αkΦk
α1,...,αk

.
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It suffices to show that the right side of (30) except for Nl1,...,lk is less
than or equal to zero to obtain the lower bound for Nl1,...,lk .

Suppose there is no such set {α1, . . . , αk} that makes the right side
of (30) except Nl1,...,lk less than or equal to zero. That means the right
side of (30) except Nl1,...,lk is always positive for any set {α1, . . . , αk}.
Suppose {α1 + 1, . . . , αk + 1} is a set where all α′is(i = 1, ..., k) are odd
such that αi > (si−li−1)(k−1)−1

k . Then this set makes the right side of
(30) except Nl1,...,lk positive. We have k more sets which are made by
replacing αi+1 by αi for each i = 1, . . . , k, from the set {α1+1, . . . , αk +
1}. If we substitute one of this set in (30), the right side of (30) except
Nl1,...,lk still be positive by our assumption. For example, if we
substitute {α1+1, α2+1, . . . , αω−1+1, αω, αω+1+1, . . . , αk +1} solution
set in equation (30), we have the formula which is positive:
(31)

Φ1
α1+1 + Φ1

α2+1 + · · ·+ Φ1
αω−1+1

︷ ︸︸ ︷
−Φ1

αω
+Φ1

αω+1+1 + · · ·+ Φ1
αk+1

︷ ︸︸ ︷
−Φ2

αω ,α1+1 − Φ2
αω ,α2+1 · · · − Φ2

αω ,αk+1 +Φ2
α1+1,α2+1 + · · ·+ Φ2

αk−1+1,αk+1

︷ ︸︸ ︷
−Φ3

αω ,α1+1,α2+1 − Φ3
αω ,α1+1,α3+1 − · · · − Φ3

αω ,αk−1+1,αk+1 + · · ·
+ Φ3

αk−2+1,αk−1+1,αk+1

︷ ︸︸ ︷
−Φ4

αω ,α1+1,α2+1,α3+1 − · · · − Φ4
αω ,αk−2+1,αk−1+1,αk+1 + . . .

...
︷ ︸︸ ︷
−Φk

α1+1,α2+1,...,αω−1+1,αω ,αω+1+1,...,αk+1

Let us call the left side of (31) as Dω where ω = 1, 2, . . . , k. We need
some explanation for the negative/positive terms in (31). Note that(
k−1

τ

)
+

(
k−1
τ−1

)
=

(
k
τ

)
. For all τ = 1, . . . , k, there are

(
k−1

τ

)
terms of form

Φτ
α1+1,...,ατ+1, which contribute as positive quantities in (31). And there

are
(
k−1
τ−1

)
terms contributing as negative quantities in (31) because τ −1

terms of the form αi+1 are chosen from {α1+1, . . . , αω−1+1, α̂ω, αω+1+
1, . . . , αk + 1} along with αω which was already chosen in the subscript
of Φτ

ω,...,ατ−2+1. Hence we have k inequalities just like (31). Now consider
the sum of Dω for ω = 1, 2, . . . , k, that is

∑k
ω=1Dω, which is denoted by

∆. By our assumption, we have

∆ > 0.
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Actually ∆ is the formula which is the sum of k formula as (31) which
can be obtained when we replace αi +1 by αi for each i = 1, . . . , k, from
the set {α1 + 1, . . . , αk + 1} where all α′is(i = 1, ..., k) are odd such that
αi > (si−li−1)(k−1)−1

k .
Now for fixed τ where 1 ≤ τ ≤ k, consider

(32) Φτ
αz1+1,...,αzh−1

+1,αzh
+1,αzh+1

+1,...,αzτ +1,

in ∆ where {z1, . . . , zτ} is a τ subset of [k]. Then overall there are k such
terms in ∆, since we have one such term in each Dω for ω = 1, 2, . . . , k,
which have an index set {z1, . . . , zτ}. Among them, τ terms are of the
form

Φτ
αz1+1,...,αzh−1

+1,αzh
,αzh+1

+1,...,αzτ +1

for each h = 1, . . . , τ (i.e. αzh
is odd and others are even) which con-

tribute as negative quantities. And k − τ of them have the form

Φτ
αz1+1,...,αzh−1

+1,αzh
+1,αzh+1

+1,...,αzτ +1

which contribute as positive quantities. Hence for index set {z1, . . . , zτ},
consider

(33)

− Φτ
αz1 ,αz2+1,...,αzτ +1

− Φτ
αz1+1,αz2 ,αz3+1...,αzτ +1

...
− Φτ

αz1+1,...,αzτ−1+1,αzτ

+ (k − τ)Φτ
αz1+1,...,αzτ +1

which is in ∆. Note that

(34)
(k − τ)Φτ

αz1+1,...,αzτ +1 ≤ (k − 1)Φτ
αz1+1,...,αzτ +1

≤ Φτ
αz1 ,αz2+1,...,αzτ +1,

since

(35)
(k − 1)

(
uz1 − lz1 − 1

αz1 + 1

)(
uz2 − lz2 − 1

αz2 + 1

)
. . .

(
uzτ − lzτ − 1

αzτ + 1

)

≤
(

uz1 − lz1 − 1
αz1

)(
uz2 − lz2 − 1

αz2 + 1

)
. . .

(
uzτ − lzτ − 1

αzτ + 1

)

is hold by Lemma 4. Thus (33) cannot be positive for index set {z1, . . . , zτ}.
Note that ∆ is the sum of the values (33) for τ = 1, . . . , k. This implies

∆ ≤ 0

which is a contradition to our assumption. This completes the proof.
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3. Applications

Here we use the same idea that was used in [1, 3] for representing
general cubic graphs with triples edges. The main difference between
the computations of our paper and those of [3] is that we consider triple
edges along with loops and double edges.

Let V =
⋃

1≤i≤2n Vi be a partition of V into 3-subsets Vi for i =
1, . . . , 2n. We define a configuration F with vertex set V where |V | = 6n.
The edge set of F consists of 3n vertex-disjoint edges. Thus F is a 1-
factor with vertex set V = V (G) and it is easy to see that the total
number of configurations is

(36)
(6n)!

23n(3n)!
.

For any edge uv in F, if both vertices u and v belong to the same
set Vi of the partition, the edge is called a 1-cycle. Otherwise they are
contained in two different sets Vi and Vj . If there are exactly two such
edges between Vi and Vj , we call this a 2-cycle and if there are three, it
is a triple.

A graph G is obtained from this configuration by shrinking Vi to a
vertex for all i. The graph G will have a vertex set V with |V | = 2n, and
an edge set E(G) with |E(G)| = 3n, where an edge uv ∈ E(G) may be
a loop, a single edge, or a part of double/triple edge where the number
of these are denoted by l, s, d, or t, respectively. Note that cubic graphs
with 2n vertices (order 2n) satisfy the relation 2n = 2s+4d+2l+6t

3 .

Now, for i = 1, . . . , 2n, let P 1
i be the set of configurations which

have a 1-cycle in Vi. Assume the
(
2n
2

)
pairs of sets Vi in the partition

are ordered from 1 to
(
2n
2

)
. Let P 2

j be the set of configurations which
have a 2-cycle in the jth pair for j = 1, . . . ,

(
2n
2

)
. Let P 3

j be the set of
configurations which have a triple in the jth pair for j = 1, . . . ,

(
2n
2

)
.

Let N(l1, l2, l3) be number of configurations with exactly l1 1-cycles, l2
2-cycles, and l3 triples, that means the number of configurations which
belong to exactly l1 of {P 1

i | i = 1, . . . , 2n}, l2 of {P 2
j | j = 1, . . . ,

(
2n
2

)},
and l3 of {P 3

j | j = 1, . . . ,
(
2n
2

)}.
Let Sl1,l2,l3 be the number of configurations which have at least l1

1-cycles, l2 2-cycles and l3 triple edges. Then Sl1,l2,l3 can be found by
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using its definition in (15);
(37)

Sl1,l2,l3 =
(

2n

l1, 2l2, 2l3, 2n− l1 − 2l2 − 2l3

)
3l1 (2l2)!

2l2 · l2! (3
2 · 2)l2 (2l3)!

2l3 · l3! (6)l3

(1 + o(1))
(2(3n− l1 − 2l2 − 3l3))!

23n−l1−2l2−3l3(3n− l1 − 2l2 − 3l3)!
.

where the term (1 + o(1)) allows for a negligible number of new triples
from 2-cycles(see Lemma 1 in [3]). Here is a sketch of the justification
of this formula. First we choose l1 + 2l2 + 2l3 + 2n− l1− 2l2− 2l3 labels
from the 2n available. Then it can be seen that the number of ways to
form the adjacencies is

3l1 (2l2)!
2l2 · l2! (3

2 · 2)l2 (2l3)!
2l3 · l3! (6)l3

for configurations which have l1 1-cycles, l2 2-cycles and l3 triple edges.

(2(3n− l1 − 2l2 − 3l3))!
23n−l1−2l2−3l3(3n− l1 − 2l2 − 3l3)!

is the number of ways to lay down the remaining edges. Then, on
substituting (37) into (28) and simplifying it, we have the number of
configurations which have exactly l1 1-cycles, l2 2-cycles and l3 triples;

Theorem 6. For l1, l2, l3 = o(
√

n),

(38) Nl1,l2,l3 = (1 + o(1))
e−2− 1

18n

l1!l2!l3!(18n)l3

(6n)!
23n(3n)!

.

Proof. It is enough to consider right side of (28), that is upper bound
of N(l1, l2, l3). On substituting equation (37) into the right side of (28)
and simplifying it with the fact that (n)k

nk = 1 + o(1) for k = o(n1/2), we
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have, where k = 3,
(39)

N(l1, l2, l3) ≤
∑

0≤v1≤2α1
0≤v2≤2α2
0≤v3≤2α3

(−1)v1+v2+v3

3∏

i=1

(
li + vi

vi

)

(
2n

l1, 2l2, 2l3, 2n− l1 − 2l2 − 2l3

)
3l1 (2l2)!

2l2 · l2! (3
2 · 2)l2 (2l3)!

2l3 · l3! (6)l3

(2(3n− l1 − 2l2 − 3l3))!
23n−l1−2l2−3l3(3n− l1 − 2l2 − 3l3)!

=
1

l1!l2!l3!
(6n)!

23n(3n)!

∑

0≤v1≤2α1
0≤v2≤2α2
0≤v3≤2α3

(−1)v1+v2+v3

v1!v2!v3!

3l1+v1+2l2+2v2+l3+v32l1+v1+2l2+2v2+3(l3+v3)

(2n)!
(2n− (l1 + v1)− 2(l2 + v2)− 2(l3 + v3)!

(3n)!
(3n− (l1 + v1)− 2(l2 + v2)− 3(l3 + v3)!
(6n− 2(l1 + v1)− 4(l2 + v2)− 6(l3 + v3)!

(6n)!

∼ (1 + o(1))
1

l1! l2! l3!
1

(18n)l3

(6n)!
23n · (3n)![ ∑

0≤v1≤2α1
0≤v2≤2α2
0≤v3≤2α3

(−1)v1+v2+v3

v1! v2! v3!
1

(18n)v3

]

∼ (1 + o(1))
e−2− 1

18n

l1!l2!l3!(18n)l3

(6n)!
23n(3n)!

,

(since
∑

(−1)n/n! = e−1).

where both l, d = o(
√

n) and {ᾱi} with ᾱi > (si−li−1)(k−1)−1
k (1 ≤ i ≤ 3).

Since we have the same result for the left side of (28), so the proof is
completed.

Let g(2n, l1, l2, l3) be the number of labelled cubic general graphs
G with exactly l1 loops, l2 double edges and l3 triple edges. Then we
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have the following relationship between g(2n, l1, l2, l3) and N(l1, l2, l3) =
Nl1,l2,l3 by shrinking each 3-vertex set Vi of a configuration to a single
vertex in a graph.

Proposition 7.

(40) N(l1, l2, l3) = g(2n, l1, l2, l3)3l1

(
3
2

)2l2

2l26l3(3!)2n−l1−2l2−2l3 .

Then from Theorem 6 and Proposition 7, we have the following corol-
laries.

Corollary 8. For l1, l2, l3 = o(
√

n), we have

(41) g(2n, l1, l2, l3) = (1 + o(1))
e−2− 1

18n

(3!)2n

(6n)!
23n(3n)!

2l12l2( 1
3n)l3

l1!l2!l3!
.

It is interesting to compare this result to (13). The fact that triple
edges are negligible is proved in [3] with tremendous work. It is easy to
handle triple edges when we find (41) by using I&E with three types of
properties.

We have the following asymptotic number of general cubic graphs
on 2n vertices.

Corollary 9.

(42) g(2n) = (1 + o(1))
e2+ 5

18n

(3!)2n
· (6n)!
23n · (3n)!

.

The asymptotic number of general cubic graphs on 2n vertices ob-
tained in Corollary 9 looks different to the one in (14) which was found
in Wormald [10], Bender and Canfield [1] and Chae [3]. However they
are basically the same. Another application of I&E with five types of
properties can be found in [4] in which the asymptotic numbers of gen-
eral 4-regular graphs are computed with a given connectivity. Note that
those numbers can not be obtained from the formula in Proposition 3.8
in [10].
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