ALMOST MINIMAL PRECONTINUOUS FUNCTIONS

Won Keun Min AND Young Key Kim

Abstract. In this paper, we introduce the notion of almost minimal precontinuous function and investigate characterizations for such a function.

1. Introduction

In [6], Popa and Noiri introduced the notion of minimal structure which is a generalization of a topology on a given nonempty set. And they introduced the notion of *m*-continuous function [6] as a function defined between a minimal structure and a topological space. They showed that the *m*-continuous functions have properties similar to those of continuous functions between topological spaces. In [3], we introduced the notion of *m*-preopen sets defined on minimal structures and investigated some basic properties. In [4], we introduced and studied the notion of *m*-precontinuous function which is a generalization of *m*-continuous function defined between a minimal structure and a topological space. In this paper, we introduce the notion of almost *m*-precontinuous function defined between a minimal structure and a topological space and investigate characterizations for the function.

2. Preliminaries

Let X be a topological space and $A \subseteq X$. The closure of A and the interior of A are denoted by cl(A) and int(A), respectively. A subfamily m_X of the power set P(X) of a nonempty set X is called a *minimal structure* [6] on X if $\emptyset \in m_X$ and $X \in m_X$. By (X, m_X) , we denote a nonempty set X with a minimal structure m_X on X. Simply we call

Received January 26, 2010. Accepted March 11, 2010.

²⁰⁰⁰ Mathematics Subject Classification: 54C08.

Key words and phrases: minimal structures, m-preopen sets, m-continuous, m-precontinuous, almost m-precontinuous, m-precompact.

Corresponding author:wkmin@kangwon.ac.kr.

 (X, m_X) a space with a minimal structure m_X on X. Elements in m_X are called *m*-open sets. Let (X, m_X) be a space with a minimal structure m_X on X. For a subset A of X, the *m*-closure of A and the *m*-interior of A are defined as the following [6]:

$$mInt(A) = \cup \{U : U \subseteq A, U \in m_X\};$$

$$mCl(A) = \cap \{F : A \subseteq F, X - F \in m_X\}.$$

A set A is called an m-preopen set in X if

$$A \subseteq mInt(mCl(A)).$$

A set A is called an *m*-preclosed set if the complement of A is *m*-preopen.

The *m*-pre-closure and the *m*-pre-interior of A, denoted by mpCl(A) and mpInt(A), respectively, are defined as the following:

$$mpCl(A) = \cap \{F \subseteq X : A \subseteq F, F \text{ is } m \text{-preclosed in } X\}$$

 $mpInt(A) = \bigcup \{ U \subseteq X : U \subseteq A, U \text{ is } m \text{-preopen in } X \}.$

Theorem 2.1. ([3]) Let (X, m_X) be a space with a minimal structure m_X and $A \subseteq X$. Then

(1) $mpInt(A) \subseteq A \subseteq mpCl(A)$.

(2) If $A \subseteq B$, then $mpInt(A) \subseteq mpInt(B)$ and $mpCl(A) \subseteq mpCl(B)$.

(3) A is m-preopen iff mpInt(A) = A.

(4) F is *m*-preclosed iff mpCl(F) = F.

(5) mpInt(mpInt(A)) = mpInt(A) and mpCl(mpCl(A)) = mpCl(A). (6) mpCl(X - A) = X - mpInt(A) and mpInt(X - A) = X - mpCl(A).

Let $f : (X, m_X) \to (Y, \tau)$ be a function between a space (X, m_X) with minimal structure m_X and a topological space (Y, τ) . Then

(1) f is said to be *m*-continuous [6] if for each x and each open set V containing f(x), there exists an *m*-open set U containing x such that $f(U) \subseteq V$;

(2) f is said to be minimal precontinuous (briefly *m*-precontinuous) [4] if for each x and each open set V containing f(x), there exists an *m*-preopen set U containing x such that $f(U) \subseteq V$.

3. Almost Minimal Precontinuous Functions

Definition 3.1. Let $f : (X, m_X) \to (Y, \tau)$ be a function between a space X with a minimal structure m_X and a topological space Y. Then f is said to be *almost minimal precontinuous* (briefly, *almost mprecontinuous*) at x in X if for each open subset V containing f(x), there is an *m*-preopen set U containing x such that $f(U) \subseteq int(cl(V))$. A function f is said to be almost minimal precontinuous if it has the property at each point of X.

m-continuity $\Rightarrow m$ -precontinuity \Rightarrow almost m-precontinuity

In the above diagram, the converse may not be true as seen in the next example.

Example 3.2. In $X = \{a, b, c\}$, consider a minimal structure $m_X =$ $\{\emptyset, \{a\}, \{b\}, X\}$ and a topology $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$. Let $f: (X, m_X) \to$ (X, τ) be a function defined as the following:

$$f(a) = a; f(b) = c; f(c) = b$$

Then f is almost m-precontinuous but not m-precontinuous.

Theorem 3.3. Let $f:(X,m_X) \to (Y,\tau)$ be a function between a space X with a minimal structure m_X and a topological space (Y, τ) . Then the following are equivalent:

(1) f is almost m-precontinuous.

(2) $f^{-1}(V) \subseteq mpInt(f^{-1}(int(cl(V))))$ for every open subset V of Y. (3) $mpCl(f^{-1}(cl(int(F)))) \subseteq f^{-1}(F)$ for every closed set F of Y. (4) $mpCl(f^{-1}(cl(int(cl(B))))) \subseteq f^{-1}(cl(B))$ for every set B of Y.

- (5) $f^{-1}(int(B)) \subseteq mpInt(f^{-1}(int(cl(int(B)))))$ for every set B of Y.
- (6) $f^{-1}(V)$ is *m*-preopen for every regular open subset V of Y.

Proof. (1) \Rightarrow (2) Let V be an open set in Y. For each $x \in f^{-1}(V)$, by hypothesis, there exists an m-preopen set U of X containing x such that $f(U) \subseteq int(cl(V))$. Then since $x \in U \subseteq f^{-1}(int(cl(V)))$, by definition of the interior operator mpInt, $x \in mpInt(f^{-1}(int(cl(V)))))$. So we have $f^{-1}(V) \subseteq mpInt(f^{-1}(int(cl(V)))).$

 $(2) \Rightarrow (3)$ Let F be a closed subset in Y. Then from (2) and Theorem 2.1,

$$f^{-1}(Y - F) \subseteq mpInt(f^{-1}(int(cl(Y - F)))))$$

= mpInt(f^{-1}(Y - cl(int(F))))
$$\subseteq X - mpCl(f^{-1}(cl(int(F)))).$$

So $mpCl(f^{-1}(cl(int(F)))) \subset f^{-1}(F)$.

 $(3) \Rightarrow (4)$ For $B \subseteq Y$, since cl(B) is closed in Y, from (3), it follows $mpCl(f^{-1}(cl(int(cl(B))))) \subset f^{-1}(cl(B)).$

Won Keun Min and Young Key Kim

$$(4) \Rightarrow (5) \text{ For } B \subseteq Y, \text{ from } (4), \text{ it follows}$$

$$f^{-1}(int(B)) = X - f^{-1}(cl(Y - B))$$

$$\subseteq X - mpCl(f^{-1}(cl(int(cl(Y - B))))))$$

$$= mpInt(f^{-1}(int(cl(int(B))))).$$

Thus we get the result.

 $(5) \Rightarrow (6)$ Obvious.

(6) \Rightarrow (1) For each $x \in X$ and V any open set in Y containing f(x), since int(cl(V)) is regular open, by (6), $f^{-1}(int(cl(V)))$ is an *m*-preopen set. Put $U = f^{-1}(int(cl(V)))$; then the *m*-preopen set U satisfies $f(x) \in$ $f(U) \subseteq int(cl(V))$. Hence f is almost m-precontinuous.

Let X be a topological space. A subset S of X is called *semi-open* set [1] (resp. α -set, β -set [5], preopen set [2], regular open set) if $S \subseteq$ cl(int(S)) (resp. $S \subseteq int(cl(int(S))), S \subseteq cl(int(cl(S))), S \subseteq int(cl(S)))$ S = int(cl(S)). The complement of a semi-open set (resp. α -set, β -set, preopen set, regular open) is called *semi-closed set* (resp. α -closed set, β -closed set, preclosed set, regular closed).

Theorem 3.4. Let $f: (X, m_X) \to (Y, \tau)$ be a function between a space X with a minimal structure m_X and a topological space (Y, τ) . Then the following are equivalent:

- (1) f is almost *m*-precontinuous.
- (2) $f^{-1}(K)$ is *m*-preclosed for every regular closed set K of Y.
- (3) $mpCl(f^{-1}(G)) \subseteq f^{-1}(cl(G))$ for every β -set G of Y. (4) $mpCl(f^{-1}(G)) \subseteq f^{-1}(cl(G))$ for every semiopen set G of Y.

Proof. (1) \Leftrightarrow (2) It is obvious from Theorem 3.3.

 $(2) \Rightarrow (3)$ Let G be any β -set. Then from cl(G) = cl(int(cl(G))), we know that cl(G) is a regular closed set. So from (2),

$$mpCl(f^{-1}(G)) \subseteq mpCl(f^{-1}(cl(G))) = f^{-1}(cl(G)).$$

Hence $mpCl(f^{-1}(G)) \subseteq f^{-1}(cl(G))$.

 $(3) \Rightarrow (4)$ It is obvious since every semiopen set is β -open.

(4) \Rightarrow (2) Let V be any regular closed set of Y. Then V also is semiopen. By (4) and cl(V) = V,

$$mpCl(f^{-1}(V)) \subseteq f^{-1}(cl(V)) = f^{-1}(V).$$

This implies that $f^{-1}(V)$ is *m*-preclosed.

80

Theorem 3.5. Let $f: (X, m_X) \to (Y, \tau)$ be a function between a space X with a minimal structure m_X and a topological space (Y, τ) . Then the following are equivalent:

- (1) f is almost *m*-precontinuous.
- (2) $mpCl(f^{-1}(G)) \subseteq f^{-1}(cl(G))$ for every preopen set G of Y.

(3) $f^{-1}(G) \subseteq mpInt(f^{-1}(int(cl(G))))$ for every preopen set G of Y.

Proof. (1) \Leftrightarrow (2) Let G be any preopen set in Y. Then since G also is β -open, from Theorem 3.4, (2) is obviously obtained.

 $(1) \Rightarrow (3)$ Let G be any preopen set of Y; then int(cl(G)) is regular open in Y. From Theorem 3.3,

$$f^{-1}(G) \subseteq f^{-1}(int(cl(G))) = mpInt(f^{-1}(int(cl(G)))).$$

Hence $f^{-1}(G) \subseteq mpInt(f^{-1}(int(cl(G)))).$

 $(3) \Rightarrow (1)$ Let G be any regular open set in Y. Then G is preopen. By (3) and $G = int(cl(G)), f^{-1}(G) \subseteq mpInt(f^{-1}(int(cl(G)))) =$ $mpInt(f^{-1}(G))$. It implies that $f^{-1}(G)$ is *m*-preclosed, and hence by Theorem 3.3, f is almost m-precontinuous.

We recall that a subset A in a topological space X is said to be δ -open [8] if for each $x \in A$ there exists a regular open set G such that $x \in G \subseteq A$. A point $x \in X$ is called a δ -cluster point of A if $A \cap int(cl(V)) \neq \emptyset$ for every open set V containing x. The set of all δ -cluster points of A is called δ -closure of A [8] and is denoted by $cl_{\delta}(A)$. If $A = cl_{\delta}(A)$, then A is called δ -closed. The complement of a δ -closed set is said to be δ -open. It is shown in [8] that $cl(A) = cl_{\delta}(A)$ for every open set A and $cl_{\delta}(B)$ is closed for every subset B of X. The set $\{x \in X : x \in U \subseteq A \text{ for some regular open set } U \circ f X\}$ is called the δ -interior of A and is denoted by $int_{\delta}(A)$.

Theorem 3.6. Let $f:(X,m_X) \to (Y,\tau)$ be a function between a space X with a minimal structure m_X and a topological space (Y, τ) . Then the following are equivalent:

(1) f is almost m-precontinuous.

(2) $mpCl(f^{-1}(cl(int(cl_{\delta}(B))))) \subseteq f^{-1}(cl_{\delta}(B))$ for every set B of Y.

(3) $mpCl(f^{-1}(cl(int(cl(B))))) \subseteq f^{-1}(cl_{\delta}(B))$ for every set B of Y. (4) $mpCl(f^{-1}(cl(int(cl(G))))) \subseteq f^{-1}(cl(G))$ for every open set G of Y_{\cdot}

(5) $mpCl(f^{-1}(cl(int(cl(G))))) \subseteq f^{-1}(cl(G))$ for every preopen set G of Y.

Won Keun Min and Young Key Kim

Proof. (1) \Rightarrow (2) Let *B* be any subset in *Y*. Then since $cl_{\delta}(B)$ is closed, by Theorem 3.3 (3), the statement (2) is obtained.

 $(2) \Rightarrow (3)$ It follows from $cl(B) \subseteq cl_{\delta}(B)$ for every subset B of Y.

 $(3) \Rightarrow (4)$ It is obvious since $cl(G) = cl_{\delta}(G)$ for every open subset G of Y.

 $\begin{array}{l} (4) \Rightarrow (5) \mbox{ Let } G \mbox{ be a preopen subset of } Y. \mbox{ Then } cl(G) = cl(int(cl(G))). \\ \mbox{ Set } A = int(cl(G)) \mbox{ then } by \ (4), \ mpCl(f^{-1}(cl(int(cl(A))))) \subseteq f^{-1}(cl(A)). \\ \mbox{ Since } cl(A) = cl(G), \mbox{ we have } mpCl(f^{-1}(cl(int(cl(G))))) \subseteq f^{-1}(cl(G)). \end{array}$

 $(5) \Rightarrow (1)$ Let A be a regular closed subset of Y. Then int(A) is preopen. From (5) and A = cl(int(A)),

$$mpCl(f^{-1}(A)) = mpCl(f^{-1}(cl(int(A))))$$

= $mpCl(f^{-1}(cl(int(cl(int(A))))))$
 $\subseteq f^{-1}(cl(int(A)))$
= $f^{-1}(A).$

It implies $f^{-1}(A)$ is *m*-preclosed, and so by Theorem 3.4, f is almost *m*-precontinuous.

Theorem 3.7. Let $f : (X, m_X) \to (Y, \tau)$ be a function between a space X with a minimal structure m_X and a topological space (Y, τ) . Then the following are equivalent:

- (1) f is almost m-precontinuous.
- (2) $f(mpCl(B)) \subseteq cl_{\delta}(f(B))$ for every set B of X.
- (3) $f^{-1}(F)$ is *m*-preclosed for every δ -closed set *F* of *Y*.
- (4) $f^{-1}(G)$ is *m*-preopen for every δ -open set G of Y.
- (5) $f^{-1}(int_{\delta}(B))) \subseteq mpInt(f^{-1}(B))$ for every set B of Y.
- (6) $mpCl(f^{-1}(B)) \subseteq f^{-1}(cl_{\delta}(B))$ for every set B of Y.

Proof. (1) \Rightarrow (2) For $B \subseteq Y$, let $x \in mpCl(B)$ and V any open set of Y containing f(x). Then there exists an m-preopen set U containing x such that $f(U) \subseteq int(cl(V))$. Since $x \in mpCl(B)$, $B \cap U \neq \emptyset$ for the m-preopen set U, and so $\emptyset \neq f(U) \cap f(B) \subseteq int(cl(V)) \cap f(B)$. This implies $f(x) \in cl_{\delta}(f(B))$. Consequently, $f(mpCl(B)) \subseteq cl_{\delta}(f(B))$.

 $(2) \Rightarrow (3)$ Let F be any cl_{δ} -closed set of Y. Then from (2), it follows

$$f(mpCl(f^{-1}(F))) \subseteq cl_{\delta}(f(f^{-1}(F))) \subseteq cl_{\delta}(F) = F.$$

So this implies $f^{-1}(F)$ is *m*-preclosed

 $(3) \Rightarrow (4)$ It is obvious.

82

(4) \Rightarrow (5) For $B \subseteq Y$, since $int_{\delta}(B)$ is a δ -open set of Y, from (4), $f^{-1}(int_{\delta}(B)) = mpInt(f^{-1}(int_{\delta}(B))) \subseteq mpInt(f^{-1}(B))$. Hence $f^{-1}(int_{\delta}(B)) \subseteq mpInt(f^{-1}(B))$.

 $(5) \Rightarrow (6)$ Let *B* be any subset of *Y*. From (5), we have $f^{-1}(cl_{\delta}(B)) = X - f^{-1}(int_{\delta}(Y - B)) \supseteq X - mpInt(f^{-1}(Y - B)) = mpCl(f^{-1}(B))$. Hence $mpCl(f^{-1}(B)) \subseteq f^{-1}(cl_{\delta}(B))$.

(6)
$$\Rightarrow$$
 (1) For $B \subseteq Y$, since $cl_{\delta}(B)$ is closed in Y , from (6),
 $mpCl(f^{-1}(cl(int(cl_{\delta}(B))))) \subseteq f^{-1}(cl_{\delta}(cl(int(cl_{\delta}(B))))))$
 $= f^{-1}(cl(int(cl_{\delta}(B)))))$
 $\subseteq f^{-1}(cl_{\delta}(B)).$

Hence by Theorem 3.6, f is almost m-precontinuous.

Definition 3.8 ([4]). A subset A of a space (X, m_X) with a minimal structure m_X is said to be *m*-precompact relative to A if every collection $\{U_i : i \in J\}$ of *m*-preopen subsets of X such that $A \subseteq \cup \{U_i : i \in J\}$, there exists a finite subset J_0 of J such that $A \subseteq \cup \{U_j : j \in J_0\}$. A subset A of a minimal structure (X, m_X) is said to be *m*-precompact if A is *m*-precompact as a subspace of X.

A topological space (X, τ) is said to be *nearly compact* [7] if every collection $\{U_i : i \in J\}$ of open subsets of X such that $X \subset \bigcup \{U_i : i \in J\}$, there exists a finite subset J_0 of J such that $X = \bigcup \{int(cl(U_i)) : i \in J_0\}$.

Theorem 3.9. Let $f : (X, m_X) \to (Y, \tau)$ be a function between a space X with a minimal structure m_X and a topological space (Y, τ) . If f is an almost m-precontinuous surjection and if X is m-precompact, then Y is nearly compact.

Proof. Let \mathcal{C} be any open cover of Y. For each $x \in X$, there exists $V \in \mathcal{C}$ such that $f(x) \in V$. Since f is almost m-precontinuous, there exists an m-preopen set U containing x such that $f(U) \subseteq int(cl(V))$. Then the family $\mathcal{U} = \{U : x \in X\}$ is a cover of X by m-preopen sets in X and since X is m-precompact, there is a finite subcover $\{U_j \in \mathcal{U} : j = 1, 2, \cdots, n\}$ such that $X = \cup U_j$. So we have

$$Y = f(\cup U_j) = \cup f(U_j) \subseteq \cup int(cl(V_j)),$$

where $f(U_j) \subseteq int(cl(V_j))$ for $V_j \in \mathcal{C}$.

Hence Y is nearly compact.

83

Won Keun Min and Young Key Kim

References

- N. Levine; Semi-open sets and semi-continuity in topological spaces, Ams. Math. Monthly, 70(1963), 36-41.
- A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb; On precontinuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. Egypt, 53 (1982), 47-53.
- W. K. Min and Y. K. Kim; m-preopen sets and M-precontinuity on spaces with minimal structures, Advances in Fuzzy Sets and Systems, 4(3) (2009), 237-245.
- 5. O. Njåstad ; On some classes of nearly open sets, pacific journal of mathematics, **15**(3) (1964), 961-970.
- V. Popa and T. Noiri; On the definition of some generalized forms of continuity under minimal conditions, Mem. Fac. Sci. Kochi. Univ. Ser. Math. 22(2001), 9-19.
- M. K. Singal and A. Mathur; On nearly-compact spaces, Boll. Un. Mat. Ital., 2(4) (1969), 702-710.
- N. V. Velicko; *H-closed topological Spaces*, Amer. Math. Soc. Transl., 78(1968), 103-118.

Department of Mathematics, Kangwon National University, Chuncheon, 200-701, Korea *E-mail*: wkmin@kangwon.ac.kr

Department of Mathematics, MyongJi University, Youngin 449-728, Korea. *E-mail*: ykkim@mju.ac.kr