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ALMOST MINIMAL PRECONTINUOUS FUNCTIONS

Won Keun Min and Young Key Kim

Abstract. In this paper, we introduce the notion of almost min-
imal precontinuous function and investigate characterizations for
such a function.

1. Introduction

In [6], Popa and Noiri introduced the notion of minimal structure
which is a generalization of a topology on a given nonempty set. And
they introduced the notion of m-continuous function [6] as a function
defined between a minimal structure and a topological space. They
showed that the m-continuous functions have properties similar to those
of continuous functions between topological spaces. In [3], we introduced
the notion of m-preopen sets defined on minimal structures and investi-
gated some basic properties. In [4], we introduced and studied the notion
of m-precontinuous function which is a generalization of m-continuous
function defined between a minimal structure and a topological space.
In this paper, we introduce the notion of almost m-precontinuous func-
tion defined between a minimal structure and a topological space and
investigate characterizations for the function.

2. Preliminaries

Let X be a topological space and A ⊆ X. The closure of A and the
interior of A are denoted by cl(A) and int(A), respectively. A subfamily
mX of the power set P (X) of a nonempty set X is called a minimal
structure [6] on X if ∅ ∈ mX and X ∈ mX . By (X, mX), we denote a
nonempty set X with a minimal structure mX on X. Simply we call
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(X,mX) a space with a minimal structure mX on X. Elements in mX

are called m-open sets. Let (X,mX) be a space with a minimal structure
mX on X. For a subset A of X, the m-closure of A and the m-interior
of A are defined as the following [6]:

mInt(A) = ∪{U : U ⊆ A,U ∈ mX};
mCl(A) = ∩{F : A ⊆ F,X − F ∈ mX}.

A set A is called an m-preopen set in X if

A ⊆ mInt(mCl(A)).

A set A is called an m-preclosed set if the complement of A is m-preopen.
The m-pre-closure and the m-pre-interior of A, denoted by mpCl(A)

and mpInt(A), respectively, are defined as the following:

mpCl(A) = ∩{F ⊆ X : A ⊆ F, F is m-preclosed in X}
mpInt(A) = ∪{U ⊆ X : U ⊆ A,U is m-preopen in X}.

Theorem 2.1. ([3]) Let (X, mX) be a space with a minimal structure
mX and A ⊆ X. Then

(1) mpInt(A) ⊆ A ⊆ mpCl(A).
(2) If A ⊆ B, then mpInt(A) ⊆ mpInt(B) and mpCl(A) ⊆ mpCl(B).
(3) A is m-preopen iff mpInt(A) = A.
(4) F is m-preclosed iff mpCl(F ) = F .
(5) mpInt(mpInt(A)) = mpInt(A) and mpCl(mpCl(A)) = mpCl(A).
(6) mpCl(X − A) = X − mpInt(A) and mpInt(X − A) = X −

mpCl(A).

Let f : (X, mX) → (Y, τ) be a function between a space (X,mX)
with minimal structure mX and a topological space (Y, τ). Then

(1) f is said to be m-continuous [6] if for each x and each open set
V containing f(x), there exists an m-open set U containing x such that
f(U) ⊆ V ;

(2) f is said to be minimal precontinuous (briefly m-precontinuous)
[4] if for each x and each open set V containing f(x), there exists an
m-preopen set U containing x such that f(U) ⊆ V .

3. Almost Minimal Precontinuous Functions

Definition 3.1. Let f : (X,mX) → (Y, τ) be a function between
a space X with a minimal structure mX and a topological space Y .
Then f is said to be almost minimal precontinuous (briefly, almost m-
precontinuous) at x in X if for each open subset V containing f(x),
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there is an m-preopen set U containing x such that f(U) ⊆ int(cl(V )).
A function f is said to be almost minimal precontinuous if it has the
property at each point of X.

m-continuity ⇒ m-precontinuity ⇒ almost m-precontinuity

In the above diagram, the converse may not be true as seen in the
next example.

Example 3.2. In X = {a, b, c}, consider a minimal structure mX =
{∅, {a}, {b}, X} and a topology τ = {∅, {a}, {a, b}, X}. Let f : (X, mX) →
(X, τ) be a function defined as the following:

f(a) = a; f(b) = c; f(c) = b.

Then f is almost m-precontinuous but not m-precontinuous.

Theorem 3.3. Let f : (X,mX) → (Y, τ) be a function between a
space X with a minimal structure mX and a topological space (Y, τ).
Then the following are equivalent:

(1) f is almost m-precontinuous.
(2) f−1(V ) ⊆ mpInt(f−1(int(cl(V )))) for every open subset V of Y .
(3) mpCl(f−1(cl(int(F )))) ⊆ f−1(F ) for every closed set F of Y .
(4) mpCl(f−1(cl(int(cl(B))))) ⊆ f−1(cl(B)) for every set B of Y .
(5) f−1(int(B)) ⊆ mpInt(f−1(int(cl(int(B)))) for every set B of Y .
(6) f−1(V ) is m-preopen for every regular open subset V of Y .

Proof. (1) ⇒ (2) Let V be an open set in Y . For each x ∈ f−1(V ), by
hypothesis, there exists an m-preopen set U of X containing x such that
f(U) ⊆ int(cl(V )). Then since x ∈ U ⊆ f−1(int(cl(V ))), by definition
of the interior operator mpInt, x ∈ mpInt(f−1(int(cl(V )))). So we have
f−1(V ) ⊆ mpInt(f−1(int(cl(V )))).

(2) ⇒ (3) Let F be a closed subset in Y . Then from (2) and Theorem
2.1,

f−1(Y − F ) ⊆ mpInt(f−1(int(cl(Y − F ))))
= mpInt(f−1(Y − cl(int(F ))))
⊆ X −mpCl(f−1(cl(int(F )))).

So mpCl(f−1(cl(int(F )))) ⊆ f−1(F ).

(3) ⇒ (4) For B ⊆ Y , since cl(B) is closed in Y , from (3), it follows
mpCl(f−1(cl(int(cl(B))))) ⊆ f−1(cl(B)).
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(4) ⇒ (5) For B ⊆ Y , from (4), it follows

f−1(int(B)) = X − f−1(cl(Y −B))
⊆ X −mpCl(f−1(cl(int(cl(Y −B)))))
= mpInt(f−1(int(cl(int(B))))).

Thus we get the result.

(5) ⇒ (6) Obvious.

(6) ⇒ (1) For each x ∈ X and V any open set in Y containing f(x),
since int(cl(V )) is regular open, by (6), f−1(int(cl(V ))) is an m-preopen
set. Put U = f−1(int(cl(V ))); then the m-preopen set U satisfies f(x) ∈
f(U) ⊆ int(cl(V )). Hence f is almost m-precontinuous.

Let X be a topological space. A subset S of X is called semi-open
set [1] (resp. α-set, β-set [5], preopen set [2], regular open set) if S ⊆
cl(int(S)) (resp. S ⊆ int(cl(int(S))), S ⊆ cl(int(cl(S))), S ⊆ int(cl(S)),
S = int(cl(S))). The complement of a semi-open set (resp. α-set, β-set,
preopen set, regular open) is called semi-closed set (resp. α-closed set,
β-closed set, preclosed set, regular closed).

Theorem 3.4. Let f : (X,mX) → (Y, τ) be a function between a
space X with a minimal structure mX and a topological space (Y, τ).
Then the following are equivalent:

(1) f is almost m-precontinuous.
(2) f−1(K) is m-preclosed for every regular closed set K of Y .
(3) mpCl(f−1(G)) ⊆ f−1(cl(G)) for every β-set G of Y .
(4) mpCl(f−1(G)) ⊆ f−1(cl(G)) for every semiopen set G of Y .

Proof. (1) ⇔ (2) It is obvious from Theorem 3.3.

(2) ⇒ (3) Let G be any β-set. Then from cl(G) = cl(int(cl(G))), we
know that cl(G) is a regular closed set. So from (2),

mpCl(f−1(G)) ⊆ mpCl(f−1(cl(G))) = f−1(cl(G)).

Hence mpCl(f−1(G)) ⊆ f−1(cl(G)).

(3) ⇒ (4) It is obvious since every semiopen set is β-open.

(4) ⇒ (2) Let V be any regular closed set of Y . Then V also is
semiopen. By (4) and cl(V ) = V ,

mpCl(f−1(V )) ⊆ f−1(cl(V )) = f−1(V ).

This implies that f−1(V ) is m-preclosed.
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Theorem 3.5. Let f : (X,mX) → (Y, τ) be a function between a
space X with a minimal structure mX and a topological space (Y, τ).
Then the following are equivalent:

(1) f is almost m-precontinuous.
(2) mpCl(f−1(G)) ⊆ f−1(cl(G)) for every preopen set G of Y .
(3) f−1(G) ⊆ mpInt(f−1(int(cl(G)))) for every preopen set G of Y .

Proof. (1) ⇔ (2) Let G be any preopen set in Y . Then since G also
is β-open, from Theorem 3.4, (2) is obviously obtained.

(1) ⇒ (3) Let G be any preopen set of Y ; then int(cl(G)) is regular
open in Y . From Theorem 3.3,

f−1(G) ⊆ f−1(int(cl(G))) = mpInt(f−1(int(cl(G)))).

Hence f−1(G) ⊆ mpInt(f−1(int(cl(G)))).

(3) ⇒ (1) Let G be any regular open set in Y . Then G is pre-
open. By (3) and G = int(cl(G)), f−1(G) ⊆ mpInt(f−1(int(cl(G))) =
mpInt(f−1(G)). It implies that f−1(G) is m-preclosed, and hence by
Theorem 3.3, f is almost m-precontinuous.

We recall that a subset A in a topological space X is said to be
δ-open [8] if for each x ∈ A there exists a regular open set G such
that x ∈ G ⊆ A. A point x ∈ X is called a δ-cluster point of A
if A ∩ int(cl(V )) 6= ∅ for every open set V containing x. The set of
all δ-cluster points of A is called δ-closure of A [8] and is denoted by
clδ(A). If A = clδ(A), then A is called δ-closed. The complement of a
δ-closed set is said to be δ-open. It is shown in [8] that cl(A) = clδ(A)
for every open set A and clδ(B) is closed for every subset B of X. The
set {x ∈ X : x ∈ U ⊆ A for some regular open set Uof X } is called the
δ-interior of A and is denoted by intδ(A).

Theorem 3.6. Let f : (X,mX) → (Y, τ) be a function between a
space X with a minimal structure mX and a topological space (Y, τ).
Then the following are equivalent:

(1) f is almost m-precontinuous.
(2) mpCl(f−1(cl(int(clδ(B))))) ⊆ f−1(clδ(B)) for every set B of Y .
(3) mpCl(f−1(cl(int(cl(B))))) ⊆ f−1(clδ(B)) for every set B of Y .
(4) mpCl(f−1(cl(int(cl(G))))) ⊆ f−1(cl(G)) for every open set G of

Y .
(5) mpCl(f−1(cl(int(cl(G))))) ⊆ f−1(cl(G)) for every preopen set G

of Y .
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Proof. (1) ⇒ (2) Let B be any subset in Y . Then since clδ(B) is
closed, by Theorem 3.3 (3), the statement (2) is obtained.

(2) ⇒ (3) It follows from cl(B) ⊆ clδ(B) for every subset B of Y .

(3) ⇒ (4) It is obvious since cl(G) = clδ(G) for every open subset G
of Y .

(4) ⇒ (5) Let G be a preopen subset of Y . Then cl(G) = cl(int(cl(G))).
Set A = int(cl(G)) then by (4), mpCl(f−1(cl(int(cl(A))))) ⊆ f−1(cl(A)).
Since cl(A) = cl(G), we have mpCl(f−1(cl(int(cl(G))))) ⊆ f−1(cl(G)).

(5) ⇒ (1) Let A be a regular closed subset of Y . Then int(A) is
preopen. From (5) and A = cl(int(A)),

mpCl(f−1(A)) = mpCl(f−1(cl(int(A))))
= mpCl(f−1(cl(int(cl(int(A))))))
⊆ f−1(cl(int(A)))
= f−1(A).

It implies f−1(A) is m-preclosed, and so by Theorem 3.4, f is almost
m-precontinuous.

Theorem 3.7. Let f : (X,mX) → (Y, τ) be a function between a
space X with a minimal structure mX and a topological space (Y, τ).
Then the following are equivalent:

(1) f is almost m-precontinuous.
(2) f(mpCl(B)) ⊆ clδ(f(B)) for every set B of X.
(3) f−1(F ) is m-preclosed for every δ-closed set F of Y .
(4) f−1(G) is m-preopen for every δ-open set G of Y .
(5) f−1(intδ(B))) ⊆ mpInt(f−1(B)) for every set B of Y .
(6) mpCl(f−1(B)) ⊆ f−1(clδ(B)) for every set B of Y .

Proof. (1) ⇒ (2) For B ⊆ Y , let x ∈ mpCl(B) and V any open set
of Y containing f(x). Then there exists an m-preopen set U containing
x such that f(U) ⊆ int(cl(V )). Since x ∈ mpCl(B), B ∩ U 6= ∅ for the
m-preopen set U , and so ∅ 6= f(U) ∩ f(B) ⊆ int(cl(V )) ∩ f(B). This
implies f(x) ∈ clδ(f(B)). Consequently, f(mpCl(B)) ⊆ clδ(f(B)).

(2) ⇒ (3) Let F be any clδ-closed set of Y . Then from (2), it follows

f(mpCl(f−1(F ))) ⊆ clδ(f(f−1(F ))) ⊆ clδ(F ) = F.

So this implies f−1(F ) is m-preclosed

(3) ⇒ (4) It is obvious.
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(4) ⇒ (5) For B ⊆ Y , since intδ(B) is a δ-open set of Y , from
(4), f−1(intδ(B)) = mpInt(f−1(intδ(B))) ⊆ mpInt(f−1(B)). Hence
f−1(intδ(B)) ⊆ mpInt(f−1(B)).

(5) ⇒ (6) Let B be any subset of Y . From (5), we have f−1(clδ(B)) =
X − f−1(intδ(Y − B)) ⊇ X − mpInt(f−1(Y − B)) = mpCl(f−1(B)).
Hence mpCl(f−1(B)) ⊆ f−1(clδ(B)).

(6) ⇒ (1) For B ⊆ Y , since clδ(B) is closed in Y , from (6),

mpCl(f−1(cl(int(clδ(B))))) ⊆ f−1(clδ(cl(int(clδ(B)))))
= f−1(cl(int(clδ(B))))
⊆ f−1(clδ(B)).

Hence by Theorem 3.6, f is almost m-precontinuous.

Definition 3.8 ([4]). A subset A of a space (X,mX) with a minimal
structure mX is said to be m-precompact relative to A if every collection
{Ui : i ∈ J} of m-preopen subsets of X such that A ⊆ ∪{Ui : i ∈ J},
there exists a finite subset J0 of J such that A ⊆ ∪{Uj : j ∈ J0}. A
subset A of a minimal structure (X, mX) is said to be m-precompact if
A is m-precompact as a subspace of X.

A topological space (X, τ) is said to be nearly compact [7] if every
collection {Ui : i ∈ J} of open subsets of X such that X ⊂ ∪{Ui : i ∈ J},
there exists a finite subset J0 of J such that X = ∪{int(cl(Ui)) : i ∈ J0}.

Theorem 3.9. Let f : (X,mX) → (Y, τ) be a function between a
space X with a minimal structure mX and a topological space (Y, τ).
If f is an almost m-precontinuous surjection and if X is m-precompact,
then Y is nearly compact.

Proof. Let C be any open cover of Y . For each x ∈ X, there exists
V ∈ C such that f(x) ∈ V . Since f is almost m-precontinuous, there
exists an m-preopen set U containing x such that f(U) ⊆ int(cl(V )).
Then the family U = {U : x ∈ X} is a cover of X by m-preopen sets
in X and since X is m-precompact, there is a finite subcover {Uj ∈ U :
j = 1, 2, · · · , n} such that X = ∪Uj . So we have

Y = f(∪Uj) = ∪f(Uj) ⊆ ∪int(cl(Vj)),

where f(Uj) ⊆ int(cl(Vj)) for Vj ∈ C.
Hence Y is nearly compact.
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