SOME APPLICATIONS OF SOFT SET TO $B F$-ALGEBRAS

Min Su Kang and Hee Sik Kim

Abstract

In this paper we apply the notion of soft sets introduced by Molodtsov to the theory of $B F$-algebras. Soft $B F$-subalgebras and homomorphisms in soft $B F$-algebras are discussed.

1. Introduction

To solve complicated problem in economics, engineering, and environment, we can't successfully use classical methods because of various uncertainties typical for those problems. There are three theories: theory of probability, theory of fuzzy sets, and the interval mathematics which we can consider as mathematical tools for dealing with uncertainties. But all these theories have their own difficulties. Uncertainties can't be handled using traditional mathematical tools but may be dealt with using a wide range of existing theories such as probability theory, theory of (intuitionistic) fuzzy sets, theory of vague sets, theory of interval mathematics, and theory of rough sets. However, all of these theories have their own difficulties which were pointed out in ([8]). Maji et al. ([8]) and Molodtsov ([9]) suggested that one reason for these difficulties may be due to the inadequacy of the parametrization tool of the theory. To overcome these difficulties, Molodtsov ([9]) introduced the concept of soft set as a new mathematical tool for dealing with uncertainties that is free from the difficulties that have troubled the usual theoretical approaches. Molodtsov pointed out several directions for the applications of soft sets. At present, works on the soft set theory are

[^0]progressing rapidly. Maji et al. ([8]) described the application of soft set theory to a decision making problem. Maji et al. ([7]) also studied several operations on the theory of soft sets. Chen et al. ([1]) presented a new definition of soft set parametrization reduction, and compared this definition to the related concept of attributes reduction in rough set theory. The algebraic structure of set theories dealing with uncertainties has been studied by some authors.
A. Walendziak introduce the notion of $B F$-algebras, which is a generalization of B-algebras, and investigated some properties of (normal) ideals in $B F$-algebras. Recently, H. S. Kim and N. R. Kye([12]) studied some properties of (normal, closed) ideals in $B F$-algebras, especially they showed that any ideal of $B F$-algebra can be decomposed into the union of some sets, and obtained the greatest closed ideal I^{0} of an ideal I of a $B F$-algebra X contained in I. Moreover, they ([13]) introduced the notion of a quadratic $B F$-algebra, and obtained that quadratic $B F$ algebras, quadratic Q-algebras, $B G$-algebras and B-algebras are equivalent notions on a field X with $|X| \geq 3$, and hence every quadratic $B F$-algebra is a $B C I$-algebra.

In this paper we apply the notion of soft sets by Molodtsov to the theory of $B F$-algebras. Soft $B F$-subalgebras and homomorphisms in soft $B F$-algebras are discussed.

2. Preliminaries

An algebra $(X ; *, 0)$ of type $(2,0)$ is called a $B F$-algebra $([11])$ if it satisfies the following conditions:
(I) $(\forall x \in X)(x * x=0)$,
(II) $(\forall x \in X)(x * 0=x)$,
(III) $(\forall x, y \in X)(0 *(x * y)=y * x)$.

A $B F$-algebra X is said to be commutative if $x \wedge y=y \wedge x$ for all $x, y \in X$ where $x \wedge y=y *(y * x)$. A commutative $B F$-algebra will be written by $c B F$-algebra for short. A non-empty subset S of a $B F$ algebra X is called a $B F$-subalgebra of X if $x * y \in S$ for all $x, y \in S$. A mapping $f: X \rightarrow Y$ of $B F$-algebras is called a homomorphism if $f(x * y)=f(x) * f(y)$ for all $x, y \in X$. For a homomorphism $f: X \rightarrow Y$ of $B F$-algebras, the kernel of f, denoted by $\operatorname{ker}(f)$, is defined to be the
set

$$
\operatorname{ker}(f):=\{x \in X \mid f(x)=0\}
$$

Let X be a $B F$-algebra. A fuzzy set $\mu: X \rightarrow[0,1]$ is called a fuzzy subalgebra of X if $\mu(x * y) \geq \min \{\mu(x), \mu(y)\}$ for all $x, y \in X$.

Molodtsov ([9]) defined the soft set in the following way: Let U be an initial universe set and E be a set of parameters. Let $\mathscr{P}(U)$ denote the power set of U and $A \subset E$.

Definition 2.1. ([9]) A pair (F, A) is called a soft set over U, where F is a mapping given by

$$
F: A \rightarrow \mathscr{P}(U)
$$

In other words, a soft set over U is a parameterized family of subsets of the universe U. For $\varepsilon \in A, F(\varepsilon)$ may be considered as the set of ε approximate elements of the soft set (F, A). Clearly, a soft set is not a set. For illustration, Molodtsov considered several examples in ([9]).

Definition 2.2. ([7]) Let (F, A) and (G, B) be two soft sets over a common universe U. The intersection of (F, A) and (G, B) is defined to be the soft set (H, C) satisfying the following conditions:
(i) $C=A \cap B$,
(ii) $(\forall e \in C)(H(e)=F(e)$ or $G(e)$, (as both are same set)).

In this case, we write $(F, A) \widetilde{\cap}(G, B)=(H, C)$.
Definition 2.3. ([7]) Let (F, A) and (G, B) be two soft sets over a common universe U. The union of (F, A) and (G, B) is defined to be the soft set (H, C) satisfying the following conditions:
(i) $C=A \cup B$,
(ii) for all $e \in C$,

$$
H(e)= \begin{cases}F(e) & \text { if } e \in A \backslash B \\ G(e) & \text { if } e \in B \backslash A \\ F(e) \cup G(e) & \text { if } e \in A \cap B\end{cases}
$$

In this case, we write $(F, A) \widetilde{\cup}(G, B)=(H, C)$.
Definition 2.4. ([7]) If (F, A) and (G, B) are two soft sets over a common universe U, then " $(F, A) A N D(G, B)$ " denoted by $(F, A) \widetilde{\wedge}(G, B)$ is defined by $(F, A) \widetilde{\wedge}(G, B)=(H, A \times B)$, where $H(\alpha, \beta)=F(\alpha) \cap G(\beta)$ for all $(\alpha, \beta) \in A \times B$.

Definition 2.5. ([7]) For two soft sets (F, A) and (G, B) over a common universe U, we say that (F, A) is a soft subset of (G, B), denoted by $(F, A) \widetilde{\subset}(G, B)$, if it satisfies:
(i) $A \subset B$,
(ii) For every $\varepsilon \in A, F(\varepsilon)$ and $G(\varepsilon)$ are identical approximations.

3. Soft $B F$-algebras

In what follows let X and A be a $B F$-algebra and a non-empty set, respectively. We refer R to an arbitrary binary relation between an element of A and an element of X, that is, R is a subset of $A \times X$ unless otherwise specified. A set-valued function $F: A \rightarrow \mathscr{P}(X)$ can be defined as $F(x)=\{y \in X \mid x R y\}$ for all $x \in A$. The pair (F, A) is then a soft set over X. For any element x of a $B F$-algebra X, we define the order of x, denoted by $o(x)$, as

$$
o(x):=\min \left\{n \in \mathbb{N} \mid 0 * x^{n}=0\right\}
$$

where $0 * x^{n}=(\cdots((0 * x) * x) * \cdots) * x$ in which x appears n-times.
Definition 3.1. Let (F, A) be a soft set over X. Then (F, A) is called a soft BF-algebra over X if $F(x)$ is a subalgebra of X for all $x \in A$.

Let us illustrate this definition using the following examples.
Example 3.2. Let $X:=\{0,1,2,3,4\}$ be a $B F$-algebra with the following Cayley table:

$*$	0	1	2	3	4
0	0	1	2	3	4
1	1	0	1	0	1
2	2	1	0	1	0
3	3	0	1	0	1
4	4	1	0	1	0

Let (F, A) be a soft set over X, where $A=X$ and $F: A \rightarrow \mathscr{P}(X)$ is a set-valued function defined by

$$
F(x):=\{0\} \cup\{y \in X \mid x R y \Longleftrightarrow x \wedge y \in I\}
$$

for all $x \in A$ where $I=\{0,1\}$ and $x^{-1} I=\{y \in X \mid x \wedge y \in I\}$. Then $F(0)=X, F(1)=F(3)=\{0,1,2,4\}$, and $F(2)=F(4)=\{0,1,3\}$ are subalgebras of X. Therefore (F, A) is a soft $B F$-algebra over X.

Example 3.3. Consider a $B F$-algebra $X:=\{0, a, b, c, d\}$ with the following Cayley table:

$*$	0	a	b	c	d
0	0	d	c	b	a
a	a	0	d	c	b
b	b	a	0	d	c
c	c	b	a	0	d
d	d	c	b	a	0

Let $A=X$ and let $F: A \rightarrow \mathscr{P}(X)$ be a set-valued function defined as follows:

$$
F(x):=\left\{y \in X \mid x R y \Longleftrightarrow y=x^{n}, n \in \mathbb{N}\right\}
$$

for all $x \in A$ where $x^{n}=(\cdots((x * x) * x) * \cdots) * x$ in which x appears n-times. Then $F(0)=\{0\}, F(a)=F(b)=F(c)=F(d)=\{0, a, b, c, d\}$ which are subalgebras of X. Hence (F, A) is a soft $B F$-algebra. If we define a set-valued function $G: A \rightarrow \mathscr{P}(X)$ by

$$
G(x):=\left\{y \in X \mid x R y \Longleftrightarrow y=0 * x^{n}, n \in \mathbb{N}\right\}
$$

for all $x \in A$, where $0 * x^{n}=(\cdots((0 * x) * x) * \cdots) * x$ in which x appears n-times. Then $G(0)=\{0\}, G(a)=G(b)=G(c)=G(d)=\{0, a, b, c, d\}$ which are subalgebras of X. Hence (G, A) is a soft $B F$-algebra. If we define a set-valued function $H: A \rightarrow \mathscr{P}(X)$ by

$$
H(x):=\{y \in X \mid x R y \Longleftrightarrow o(x)=o(y)\}
$$

for all $x \in A$, then $H(0)=\{0\}$ is a subalgebra of X , but $H(a)=H(b)=$ $H(c)=H(d)=\{a, b, c, d\}$ is not a subalgebra of X. This shows that there exists a set-valued function $H: A \rightarrow \mathscr{P}(X)$ such that the soft set (H, A) is not a soft $B F$-algebra over X.

Example 3.4. Let $X:=\{0, a, b, c\}$. Consider the following Cayley table:

$*$	0	a	b	c
0	0	a	b	c
a	a	0	b	c
b	b	b	0	a
c	c	c	a	0

Then $(X ; *, 0)$ is a $B F$-algebra. Let (F, A) be a soft set over X, where $A=X$ and $F: A \rightarrow \mathscr{P}(X)$ is a set-valued function defined as follows:

$$
F(x):=\{y \in X \mid x R y \Longleftrightarrow o(x)=o(y)\}
$$

for all $x \in A$. Then $F(0)=\{0\}$ is a subalgebra of X, but $F(a)=$ $F(b)=F(c)=\{a, b, c\}$ is not a subalgebras of X. Hence (F, A) is not a soft $B F$-algebra over X. If we take $B=\{0\} \subset X$ and if we define a set-valued function $G: B \rightarrow \mathscr{P}(X)$ by

$$
G(x):=\{y \in X \mid x R y \Longleftrightarrow o(x)=o(y)\}
$$

for all $x \in B$, then (G, B) is a soft $B F$-algebra over X since $G(0)=\{0\}$ is a subalgebra of X.

Let A be a subalgebra of X with membership function μ_{A}. Let us consider the family of α-level sets for the function μ_{A} given by

$$
F(\alpha):=\left\{x \in X \mid \mu_{A}(x) \geq \alpha\right\}, \alpha \in[0,1] .
$$

Then $F(\alpha)$ is a subalgebra of X. If we know the family F, we can find the function $\mu_{A}(x)$ by means of the following formula:

$$
\mu_{A}(x):=\sup \{\alpha \in[0,1] \mid x \in F(\alpha)\}
$$

Thus, every subalgebra A may be considered as the soft $B F$-algebra ($F,[0,1]$).

Theorem 3.5. Let (F, A) be a soft $B F$-algebra over X. If B is a subset of A, then $\left(\left.F\right|_{B}, B\right)$ is a soft $B F$-algebra over X, where $\left.F\right|_{B}$ is the restriction of B.

Proof. Straightforward.
The following example shows that there exists a soft set (F, A) over X such that
(i) (F, A) is not a soft $B F$-algebra over X.
(ii) there exists a subset B of A such that $\left(\left.F\right|_{B}, B\right)$ is a soft $B F$-algebra over X.

Example 3.6. Let (F, A) be a soft set over X given in Example 3.4. Note that (F, A) is not a soft $B F$-algebra over X. But if we take $B=\{0\} \subset A$, then $\left(\left.F\right|_{B}, B\right)$ is a soft $B F$-algebra over X.

Theorem 3.7. Let (F, A) and (G, B) be two soft $B F$-algebras over X. If $A \cap B \neq \emptyset$, then the intersection $(F, A) \widetilde{\cap}(G, B)$ is a soft $B F$-algebra over X.

Proof. Using Definition 2.2, we can write $(F, A) \widetilde{\cap}(G, B)=(H, C)$, where $C=A \cap B$ and $H(x)=F(x)$ or $G(x)$ for all $x \in C$. Note that $H: C \rightarrow \mathscr{P}(X)$ is a mapping, and therefore (H, C) is a soft set over X. Since (F, A) and (G, B) are soft $B F$-algebras over X, it follows that $H(x)=F(x)$ is a subalgebra of X, or $H(x)=G(x)$ is a subalgebra of X for all $x \in C$. Hence $(H, C)=(F, A) \widetilde{\cap}(G, B)$ is a soft $B F$-algebra over X.

Corollary 3.8. Let (F, A) and (G, A) be two soft $B F$-algebras over X. Then their intersection $(F, A) \widetilde{\cap}(G, A)$ is a soft $B F$-algebra over X.

Proof. Straightforward.
Theorem 3.9. Let (F, A) and (G, B) be two soft $B F$-algebras over X. If A and B are disjoint, then the union $(F, A) \widetilde{\cup}(G, B)$ is a soft $B F$ algebra over X.

Proof. Using Definition 2.3, we can write $(F, A) \widetilde{\cup}(G, B)=(H, C)$, where $C=A \cup B$ and for every $e \in C$,

$$
H(e)= \begin{cases}F(e) & \text { if } e \in A \backslash B \\ G(e) & \text { if } e \in B \backslash A \\ F(e) \cup G(e) & \text { if } e \in A \cap B\end{cases}
$$

Since $A \cap B=\emptyset$, either $x \in A \backslash B$ or $x \in B \backslash A$ for all $x \in C$. If $x \in A \backslash B$, then $H(x)=F(x)$ is a subalgebra of X, since (F, A) is a soft $B F$-algebra over X. If $x \in B \backslash A$, then $H(x)=G(x)$ is a subalgebra of X, since (G, B) is a soft $B F$-algebra over X. Hence $(H, C)=(F, A) \widetilde{\cup}(G, B)$ is a soft $B F$-algebra over X.

Theorem 3.10. If (F, A) and (G, B) are soft $B F$-algebras over X, then $(F, A) \widetilde{\wedge}(G, B)$ is a soft $B F$-algebra over X.

Proof. By Definition 2.4, we know that

$$
(F, A) \widetilde{\wedge}(G, B)=(H, A \times B),
$$

where $H(x, y)=F(x) \cap G(y)$ for all $(x, y) \in A \times B$. Since $F(x)$ and $G(y)$ are subalgebras of X, the intersection $F(x) \cap G(y)$ is also a subalgebra of X. Hence $H(x, y)$ is a subalgebra of X for all $(x, y) \in A \times B$, and therefore $(F, A) \widetilde{\wedge}(G, B)=(H, A \times B)$ is a soft $B F$-algebra over X.

Definition 3.11. A soft $B F$-algebra (F, A) over X is said to be trivial (resp., whole) if $F(x)=\{0\}$ (resp., $F(x)=X$) for all $x \in A$.

Example 3.12. Consider the $B F$-algebra $X:=\{0, a, b, c\}$ in Example 3.3. For $A:=\{a, b, c\}$, let $F: A \rightarrow \mathscr{P}(X)$ be a set-valued function defined by

$$
F(x)=\{0\} \cup\{y \in X \mid x R y \Leftrightarrow o(x)=o(y)\}
$$

for all $x \in A$. Then $F(x)=X$ for all $x \in A$, and so (F, A) is a whole soft $B F$-algebra over X.

4. Soft $B F$-subalgebras

Definition 4.1. Let (F, A) and (G, B) be two soft $B F$-algebras over X. Then (F, A) is called a soft $B F$-subalgebra of (G, B), denoted by $(F, A) \widetilde{<}(G, B)$, if it satisfies:
(i) $A \subset B$,
(ii) $F(x)$ is a subalgebra of $G(x)$ for all $x \in A$.

Example 4.2. Let (F, A) be a soft $B F$-algebra over X which is given in Example 3.2. Let $B:=\{1,2,3\}$ be a subset of A and let $G: B \rightarrow \mathscr{P}(X)$ be a set-valued function defined by

$$
G(x)=\{0\} \cup\{y \in X \mid x R y \Longleftrightarrow x \wedge y \in I\}
$$

for all $x \in B$, where $I=\{0,1\}$ and $x^{-1} I=\{y \in X \mid x \wedge y \in I\}$. Then $G(1)=G(3)=\{0,1,2,4\}$ and $G(2)=\{0,1,3\}$ are subalgebras of $F(1)=F(3)$, and $F(2)$, respectively. Hence (G, B) is a soft $B F$ subalgebra of (F, A).

Theorem 4.3. Let (F, A) and (G, A) be two soft $B F$-algebras over X.
(i) If $F(x) \subset G(x)$ for all $x \in A$, then $(F, A) \widetilde{<}(G, A)$.
(ii) If $B=\{0\}$ and $(F, B),(F, X)$ are soft $B F$-algebras over X, then $(F, B) \widetilde{<}(F, X)$.

Proof. Straightforward.
Theorem 4.4. Let (F, A) be a soft $B F$-algebra over X and let $\left(G_{1}, B_{1}\right)$ and $\left(G_{2}, B_{2}\right)$ be soft $B F$-subalgebras of (F, A). Then
(i) $\left(G_{1}, B_{1}\right) \widetilde{\cap}\left(G_{2}, B_{2}\right) \widetilde{<}(F, A)$.
(ii) $B_{1} \cap B_{2}=\emptyset \Longrightarrow\left(G_{1}, B_{1}\right) \widetilde{\cup}\left(G_{2}, B_{2}\right) \widetilde{<}(F, A)$.

Proof. (i) Using Definition 2.2, we can write

$$
\left(G_{1}, B_{1}\right) \widetilde{\cap}\left(G_{2}, B_{2}\right)=(G, B),
$$

where $B=B_{1} \cap B_{2}$ and $G(x)=G_{1}(x)$ or $G_{2}(x)$ for all $x \in B$. Obviously, $B \subset A$. Let $x \in B$. Then $x \in B_{1}$ and $x \in B_{2}$. If $x \in B_{1}$, then $G(x)=G_{1}(x)$ is a subalgebra of $F(x)$ since $\left(G_{1}, B_{1}\right) \widetilde{<}(F, A)$. If $x \in B_{2}$, then $G(x)=G_{2}(x)$ is a subalgebra of $F(x)$ since $\left(G_{2}, B_{2}\right) \widetilde{<}(F, A)$. Hence $\left(G_{1}, B_{1}\right) \widetilde{\cap}\left(G_{2}, B_{2}\right)=(G, B) \widetilde{<}(F, A)$
(ii) Assume that $B_{1} \cap B_{2}=\emptyset$. We can write $\left(G_{1}, B_{1}\right) \widetilde{\cup}\left(G_{2}, B_{2}\right)=$ (G, B) where $B=B_{1} \cup B_{2}$

$$
G(x)= \begin{cases}G_{1}(x) & \text { if } x \in B_{1} \backslash B_{2}, \\ G_{2}(x) & \text { if } x \in B_{2} \backslash B_{1}, \\ G_{1}(x) \cup G_{2}(x) & \text { if } x \in B_{1} \cap B_{2}\end{cases}
$$

for all $x \in B$. Since $\left(G_{i}, B_{i}\right) \widetilde{<}(F, A)$ for $i=1,2, B=B_{1} \cup B_{2} \subset$ A and $G_{i}(x)$ is a subalgebra of $F(x)$ for all $x \in B_{i}, i=1,2$. Since $B_{1} \cap B_{2}=\emptyset, G(x)$ is a subalgebra of $F(x)$ for all $x \in B$. Therefore $\left(G_{1}, B_{1}\right) \widetilde{\cup}\left(G_{2}, B_{2}\right)=(G, B) \widetilde{<}(F, A)$.

5. Homomorphisms in soft $B F$-algebras

Let $f: X \rightarrow Y$ be a mapping of $B F$-algebras. For a soft set (F, A) over $X,(f(F), A)$ is a soft set over Y where $f(F): A \rightarrow \mathscr{P}(Y)$ is defined by $f(F)(x):=f(F(x))$ for all $x \in A$.

Lemma 5.1. Let $f: X \rightarrow Y$ be a homomorphism of $B F$-algebras. If (F, A) is a soft $B F$-algebra over X, then $(f(F), A)$ is a soft BF-algebra over Y.

Proof. For every $x \in A$, we have $f(F)(x)=f(F(x))$ is a subalgebra of Y since $F(x)$ is a subalgebra of X and its homomorphic image is also a subalgebra of Y. Hence $(f(F), A)$ is a soft $B F$-algebra over Y.

Theorem 5.2. Let $f: X \rightarrow Y$ be an homomorphism of $B F$-algebras and let (F, A) be a soft $B F$-algebra over X.
(i) If $F(x)=\operatorname{ker}(f)$ for all $x \in A$, then $(f(F), A)$ is the trivial soft $B F$-algebra over Y.
(ii) If f is onto and (F, A) is whole, then $(f(F), A)$ is the whole soft $B F$-algebra over Y.

Proof. (i) Assume that $F(x)=\operatorname{ker}(f)$ for all $x \in A$. Then $f(F)(x)=$ $f(F(x))=\left\{0_{Y}\right\}$ for all $x \in A$. Hence $(f(F), A)$ is the trivial soft $B F$ algebra over Y by Lemma 5.1 and Definition 3.11.
(ii) Suppose that f is onto and (F, A) is whole. Then $F(x)=X$ for all $x \in A$, and so $f(F)(x)=f(F(x))=f(X)=Y$ for all $x \in A$. It follows from Lemma 5.1 and Definition 3.11 that $(f(F), A)$ is the whole soft $B F$-algebra over Y.

Theorem 5.3. Let $f: X \rightarrow Y$ be a homomorphism of $B F$-algebras and let (F, A) and (G, B) be soft $B F$-algebras over X. Then

$$
(F, A) \widetilde{<}(G, B) \Rightarrow(f(F), A) \widetilde{<}(f(G), B)
$$

Proof. Assume that $(F, A) \widetilde{<}(G, B)$. Let $x \in A$. Then $A \subset B$ and $F(x)$ is a subalgebra of $G(x)$. Since f is a homomorphism, $f(F)(x)=$ $f(F(x))$ is a subalgebra of $f(G(x))=f(G)(x)$, and hence $(f(F), A) \widetilde{<}$ $(f(G), B)$.

References

[1] D. Chen, E. C. C. Tsang, D. S. Yeung and X. Wang, The parametrization reduction of soft sets and its applications, Comput. Math. Appl. 49(2005), 757-763.
[2] Y. B. Jun, Fuzzy positive implicative and fuzzy associative filters of lattice implication algebras, Fuzzy Sets and Systems 121(2001), 353-357.
[3] Y. B. Jun, S. S. Ahn and H. S. Kim, Quotient structures of some implicative algebras via fuzzy implicative filters, Fuzzy Sets and Systems 121(2001), 325332.
[4] Y. B. Jun, S. S. Ahn and H. S. Kim, Fuzzy subincline (ideals) of incline algebras, Fuzzy Sets and Systems 123(2001), 217-225.
[5] Y. B. Jun, M. A. Ozturk and S. Z. Song, On fuzzy h-ideals in hemirings, Inform. Sci. 162 (2004), 211-226.
[6] Y. B. Jun, Y. Xu and X. H. Zhang, Fuzzy filters of MTL-algebras, Inform. Sci. $175(2005), 120-138$.
[7] P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math. Appl. 45(2003), 555-562.
[8] P. K. Maji, A. R. Roy and R. Biswas, An application of soft sets in a deision making problem, Comput. Math. Appl. 44(2002), 1077-1083.
[9] D. Molodtsov, Soft set theory - First results, Comput. Math. Appl. 37(1999), 19-31.
[10] L. A. Zadeh, Fuzzy sets, Inform. Control 8(1965), 338-353.
[11] A. Walendziak, On BF-algebras, Math. Slovaca 57(2007), 119-128
[12] H. S. Kim and N. R. Kye, Some decompositions of ideals in BF-algebras, Sci. Math. Jpn. 65(2007), 123-127.
[13] H. S. Kim and N. R. Kye, On quadratic BF-algebras, Sci. Math. Jpn. 65(2007), 287-290.

Min Su Kang
Department of Mathematics
Hanyang University
Seoul 133-791, Korea
e-mail : sinchangmyun@daum.net
Hee Sik Kim
Department of Mathematics
Hanyang University
Seoul 133-791, Korea
e-mail : heekim@hanyang.ac.kr

[^0]: Received September 9, 2009. Accepted March 8, 2010.
 2000 Mathematics Subject Classification. 06D72, 06F35, 03G25.
 Key words and phrases. soft $B F$-algebra, soft subalgebra.
 e-mail: sinchangmyun@hanmail.net (Min Su Kang), heekim@hanyang.ac.kr (Hee Sik Kim)

