사변형 그래프에 관하여

정내경" - 임형규"* 박세원*"

For the quadrangular graphs

Nae-gyeong Jeong* \cdot Hyung-kyu $\mathrm{Im}^{* * *} \cdot$ Se-won Park ${ }^{* * *}$

요 약

본 논문은 최소연결 사변형 그래프 G 의 인접행렬을 연구하고 여기서 우리는 그래프 G 에 대한 $|E(G)|$ 상에서 상한을 얻고 그 얻어진 상한에 대한 또 다른 그래프를 얻는다. 더욱이 우리는 임계연결로 덮힌 사변 형 그래프 G 에 대한 $|E(G)|$ 의 상한을 얻는다.

ABSTRACT

In this paper, we study the adjacency matrix of a minimal connected quadrangular graph G, and then we obtain an upper bound on $|E(G)|$ for such a graph G, and we obtain the graph for which the upper bound is attained. In addition, we obtain an upper bound on $|E(G)|$ for a critical matching covered quadrangular graph G.

I. Introduction

Let G be a graph with vertex set $V(G)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ and edge set $E(G)$. The adjacency matrix $A=\left[a_{i j}\right]$ of G is the (0,1)-matrix of order n in which $a_{i j}=1$ if and only if the edge $v_{i} v_{j}$ joining v_{i} and v_{j} is in $E(G)$. Thus the adjacency matrix of a graph is symmetric.

If G is a bipartite graph with adjacency matrix A, there exist a permutation matrix P and a (0,1)-matrix B such that

$$
P^{T} A P=\left[\begin{array}{cc}
O & B \\
B^{T} & O
\end{array}\right]
$$

and we call B a bi-adjacency matrix of G.

In this paper, we only consider simple graphs. Thus if G is a nonbipartite graph with n vertices then its adjacency matrix is a symmetric matrix of order n which has zero trace, and
if G is a bipartite graph with partite set $\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}}\right\}$ and $\left\{\mathrm{v}_{\mathrm{m}+1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ then its adjacency matrix is a symmetric matrix of order n with $m \times(n-m)$ bi-adjacency matrix. And if G is a nonbipartite graph with adjacency matrix A then the number of edges in G equals the half of the number of nonzero entries in A, and if G is a bipartite graph with bi-adjacency matrix B then the number of edges in G equals the number of nonzero entries in B.

Note that if A is neither symmetric matrix nor

[^0]has zero trace, then we shall consider bipartite graph G with A as a bi-adjacency matrix.

For a graph G, we define the neighborhood of a vertex x in $G, N(x)$, to be the set of vertices in G adjacent to x. The co-degree of two distinct vertices x and y in $G, c(x, y)$ is the number of vertices in $N(x) \cap N(y)$. A graph G is said to be quadrangular provided $c(x, y) \neq 1$ for any two distict vertices x and y in G.

We say that a matrix A is inseparable if there do not exist permutation matrices P_{1} and P_{2} such that
$P_{1} A P_{2}=\left[\begin{array}{cc}A_{11} & O \\ O & A_{22}\end{array}\right]$
in which A_{11} and A_{22} are nonempty.
For two vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$, we define x and y to be combinatorially orthogonal provided $\left|\left\{\mathrm{i}: \mathrm{x}_{\mathrm{i}} \cdot \mathrm{y}_{\mathrm{i}} \neq 0\right\}\right| \neq 1$. Let A be a matrix. If each pair of rows and each pair of columns of A are combinatorially orthogonal then A is called combinatorially orthogonal. Since the combinatorial orthogonality of A depends only on the zero-nonzero pattern of a matrix, in discussing the combinatorial orthogonality of A we may assume that A is a (0,1)-matrix.

As noted in [1], combinatorially orthogonal matrices and quadrangular graphs are closely related.
It is easy to show that G is a connected quadrangular nonbipartite (or bipartite) graph if and only if the adjacency (or bi-adjacency) matrix A of G is an inseparable combinatorially orthogonal matrix.
A connected quadrangular graph G is said to be minimal provided G containes no proper spanning subgraph that is both connected and quadrangular.

In [1], Gibson and Zhang proved that $|E(G)| \geq 2|V(G)|-4 \quad$ for each minimal connected quadrangular bipartite graph G (see also [2]), and $|E(G)| \geq 2|V(G)|-1$ for each minimal connected quadrangular nonbipartite graph G, and characterized those graphs for which the lower bound is attained. And also, in [1], it is attained a minimal connected quadrangular bipartite graph
G of order $n \geq 8$ such that $|E(G)|=\left\lfloor(n+3)^{2 / 8}\right\rfloor-3$, and it is given a couple of open questions for the optimal upper bound on $|E(G)|$ for a minimal connected quadrangular bipartite graph G and nonbipartite graph G, respectively.

In this paper, we study the adjacency matrix of a minimal connected quadrangular graph, and then we obtain an upper bound on $|E(G)|$ for a minimal connected quadrangular nonbipartite graph G and bipartite graph G, respectively, and we obtain those graphs for which the upper bound is attained.

In addition, we obtain an upper bound on $|E(G)|$ for a critical connected matching covered quadrangular nonbipartite graph G and bipartite graph G, respectively, These are also solutions of some open questions presented in [1].

II. Optimal combinatorially orthogonal matrices and related graphs

A combinatorially orthogonal matrix A is said to be optimal provided each matrix obtained from A replacing a nonzero entry in A by 0 is not combinatorially orthogonal. Thus an optimal combinatorially orthogonal matrix is a combinatorially orthogonal matrix in which every nonzero entry is essential. For example, if
$A_{1}=\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right], \quad$ and $\quad A_{2}=\left[\begin{array}{lllll}0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0\end{array}\right]$
then A_{1} is combinatorially orthogonal matrix which is optimal, but A_{2} is combinatorially orthogonal matrix which is not optimal.

In this section, we show that optimal combinatorially orthogonal matrices and minimal quadrangular graphs are closely related.

A cell is a matrix with exactly one nonzero entry and it equals 1 . If the nonzero entry of a cell is in the (i, j) location, we denote the cell by $E_{i j}$.

Lemma 2.1 If A is an adjacency (or bi-adjacency) matrix of a minimal connected quadrangular graph, then A is an optimal combinatorially orthogonal matrix which is inseparable.

Proof. Let G be a minimal connected quadrangular graph with adjacency (or bi-adjacency) matrix $A=\left[a_{i j}\right]$. Then, A is a combinatorially orthogonal matrix which is inseparable.

Now suppose that A is not optimal. Then there exists an $a_{i j} \neq 0$ such that $A^{\prime}=A-E_{i j}-E_{j i}$ (or $A^{\prime}=A-E_{i j}$ if A is a bi-adjacency matrix of G) is inseparable and combinatorially orthogonal matrix. Clearly, the graph G with adjacency (or bi-adjacency) matrix A^{\prime} is a proper spanning subgraph of G which is connected and quadrangular. Thus the proof is completed.

The converse of Lemma 2.1 is not true. For example,
$A=\left[\begin{array}{llllllll}0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0\end{array}\right]$
and $\quad A^{\prime}=A-E_{14}-E_{16}-E_{41}-E_{61} \quad$ are optimal combinatorially orthogonal matrices which are inseparable. Let G and G be graphs with adjacency matrices A and A^{\prime} respectively. Then, clearly, G is a spanning subgraph of G which is connected and quadrangular. It implies that G is not minimal connected quadrangular graph.

By $B \leq A$ we simply mean entrywise $b_{i j} \leq a_{i j}$ for $n \times n$ (0,1)-matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$.

The next theorem immediately follows from the above remark and the definition of minimal connected quadrangular graph.

Theorem 2.2 Let A be an optimal combinatorially orthogonal matrix which is inseparable. If A contains no optimal combinatorially orthogonal matrix A^{\prime} which is inseparable and $A^{\prime}<A$ and $A^{\prime} \neq A$, then G is a minimal connected quadrangular graph with the adjacency (or bi-adjacency) matrix A.

Let P_{s} be the $s \times s$ basic circulant matrix with form:
$P_{s}=\left[\begin{array}{ccccc}0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0\end{array}\right]$,
and the $m \times n$ matrix of all 1 's is denoted by $J_{m, n}$.

For integers $r \geq 1$ and $s \geq 3$, we define
$A_{r, s}=\left[\begin{array}{cc}O & J_{r, s} \\ J_{s, r} & P_{s}+P_{s}^{-1}\end{array}\right]$
Then we can easily check that $A_{r, s}$ is the $(r+s) \times(r+s) \quad$ optimal combinatorially orthogonal matrix which is inseparable.

We consider a graph, say $G_{r, s}$, with $A_{r, s}$ as
an adjacency matrix. Then, clearly, $G_{r, s}$ is a connected quadrangular nonbipartite graph with vertex set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{r}+\mathrm{s}}\right\}$ obtained by adding the s edges $v_{r+1} v_{r+2}, \quad v_{r+2} v_{r+3}, \ldots$, $v_{r+(s-1)} v_{r+s}$, and $v_{r+1} v_{r+s}$ to the complete bipartite graph $K_{r, s}$ with partite sets $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{r}}\right\}$ and $\left\{\mathrm{v}_{\mathrm{r}+1}, \mathrm{v}_{\mathrm{r}+2}, \ldots, \mathrm{v}_{\mathrm{r}+\mathrm{s}}\right\}$.
Note that if $r \geq 3$ and $s \geq 4$ is an even integer then $A_{r, s}$ contains an optimal combinatorially orthogonal matrix A^{\prime} which is inseparable and $A^{\prime}<A_{r, s}, \quad A^{\prime} \neq A_{r, s}$. For example, such a matrix is

$$
\begin{gathered}
A^{\prime}=A_{r, s}-\left(E_{1, r+2}+E_{1, r+4}+\cdots+E_{1, r+s}+.\right. \\
\left.E_{r+2,1}+E_{r+4,1}+\cdots+E_{r+s, 1}\right)
\end{gathered}
$$

We may refer to (1) for $A_{2,4}$. Clearly, A^{\prime} is the adjacency matrix of a proper sppaning subgraph of $G_{r, s}$ which is both connected and quadrangular. Thus $G_{r, s}$ is not minimal for each even integer $s \geq 4$.

But, if $s \geq 3$ is an odd integer, then it easy to show that $A_{r, s}$ contains no optimal combinatorially orthogonal matrix A^{\prime} which is inseparable and $A^{\prime}<A_{r, s}, \quad A^{\prime} \neq A_{r, s}$. Thus $G_{r, s}$ is minimal for each odd integer $s \geq 3$ from Theorem 2.2, and we obtain following theorem from $\left|E\left(G_{r, s}\right)\right|=(r+1) s$ if we take $G=G_{r, s}$.

Theorem 2.3 For each odd integer $s \geq 3$, there exists a minimal connected quadrangular nonbipartite graph G of order $n \geq 4$ such that $|E(G)|=(n-s+1) s$.

Corollary 2.4 There exists a minimal connected quadrangular nonbipartite graph G of order $n \geq 4$ such that
$|E(G)|= \begin{cases}2 m(2 m+1) & \text { if } n=4 m, \\ (2 m+1)^{2} & \text { if } n=4 m+1, \\ (2 m+2)(2 m+1) & \text { if } n=4 m+2, \\ 2 m+3)(2 m+1) & \text { if } n=4 m+3 .\end{cases}$
Proof. Theorem 2.3 implies that if $r+s=n \geq 4$ and $s \geq 3$ is an odd integer then $G=G_{r, s} \quad$ is minimal connected quadrangular nonbipartite graph of order n. In (2), take
$\begin{cases}r=2 m-1, s=2 m+1 & \text { if } n=4 m, \\ r=2 m, s=2 m+1 & \text { if } n=4 m+1, \\ r=2 m+1, s=2 m+1 & \text { if } n=4 m+2, \\ r=2 m+2, s=2 m+1 & \text { if } n=4 m+3,\end{cases}$
then (3) follows from $|E(G)|=(r+1) s$.
In the following remark, we obtain more minimal connected quadrangular nonbipartite graphs.

Remark 2.5. For (0,1)-matrices
$Q_{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, and $Q_{3}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$,
define
$A_{1}=\left[\begin{array}{cc}Q_{2} & J_{2,2 m-2} \\ J_{2 m-2,2} & Q_{2} \oplus \cdots \oplus Q_{2}\end{array}\right]$,
$A_{2}=\left[\begin{array}{cc}Q_{3} & J_{3,2 m-2} \\ J_{2 m-2,3} & Q_{2} \oplus \cdots \oplus Q_{2}\end{array}\right]$
and
$A_{3}=\left[\begin{array}{cc}Q_{2} & J_{2,2 m-1} \\ J_{2 m-1,2} & Q_{2} \oplus \cdots \oplus Q_{2} \oplus Q_{3}\end{array}\right]$.
Then A_{1}, A_{2} and A_{3} are optimal combinatorial orthogonal matrices. Furthermore,
it is easy to show that if A_{1}, A_{2} and A_{3} are the adjacency matrices of the graphs G_{1}, G_{2} and G_{3} respectively, then G_{1}, G_{2} and G_{3} are
connected minimal quadrangular nonbipartite graphs of order n such that

Note that if $m=3$ in A_{2}, that is,

$$
A_{2}=\left[\begin{array}{llllllll}
0 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

then G_{2} with the adjacency matrix A_{2} is a connected minimal quadrangular nonbipartite graph of order 7 , and $|E(G)|=16$. But $\left|E\left(G_{4,3}\right)\right|=\left|E\left(G_{2,5}\right)\right|=15$.

Thus we have following: for a connected minimal quadrangular nonbipartite graph G of order $n \geq 4$,
$\max |\mathrm{E}(\mathrm{G})| \geq\left\{\begin{array}{lll}2 m(2 \mathrm{~m}+1) & \text { if } n=4 m, \\ (2 m+1)^{2} & \text { if } n=4 m+1, \\ (2 m+2)(2 m+1) & \text { if } n=4 m+2, \\ (2 m+3)(2 m+1) & \text { if } n=4 m+3(m \neq 1), \\ 6 & \text { if } n=7 .\end{array}\right.$
For integers $r \geq 1$ and $s \geq 2$, we define
$B_{r, s}=\left[\begin{array}{cc}O & J_{r, s} \\ J_{s, r} & P_{s}+I_{s}\end{array}\right]$, and
$B_{r, s+1}=\left[\begin{array}{cc}O & J_{r, s} \\ J_{s, r+1} & P_{s}+I_{s}\end{array}\right]$
where P_{s} is the basic circulant matrix of order s and I_{s} is the identity matrix of order s.

Then we can easily check that $B_{r, s}$ and $C_{r, s+1} \quad$ are the $(r+s) \times(r+s) \quad$ and $(r+s) \times(r+s+1) \quad$ optimal combinatorially orthogonal matrices which are inseparable,
respectively.
Theorem 2.7 For each integer $r \geq 1$, there exists a minimal connected quadrangular bipartite graph G of order $n \geq 6$ such that
$|E(G)|=\left\{\begin{array}{lll}2(m-r)(r+1) & \text { if } & n=2 m, \\ (m-r)(2 r+3) & \text { if } & n=2 m+1 .\end{array}\right.$
In particular, there exists a minimal connected quadrangular bipartite graph G of order $\quad n \geq 3$ such that
$|E(G)|=\left\{\begin{array}{lll}2\left(\frac{n}{2}-\left\lfloor\frac{n}{4}\right\rfloor\right)\left(\left\lfloor\frac{n}{4}\right\rfloor+1\right) & \text { if } & n \text { is even, }, \\ \left(\frac{n-1}{2}-\left\lfloor\frac{n}{4}\right\rfloor\right)\left(2\left\lfloor\frac{n}{4}\right\rfloor+3\right) & \text { if } & n \text { isodd. }\end{array}\right.$
Proof. Let G be the bipartite graph with the bi-adjacency matrix $B_{r, s}$ if n is an even integer and the bi-adjacency matrix $C_{r, s+1}$ if n is an odd integer in (4), where $r+s=m \geq 3$ for an integer $r \geq 1$. Then we can easily check that both $B_{r, s}$ and $C_{r, s+1}$ contain no optimal combinatorially orthogonal matrices B^{\prime} and C which are inseparable and $B^{\prime}<B_{r, s}, B^{\prime} \neq B_{r, s}$, and $C<C_{r, s+1}, C \neq C_{r, s+1}$. Thus G is a minimal connected quadrangular bipartite graph of order $n=2 m$ or $n=2 m+1$ from Theorem 2.2. (5) follows from $|E(G)|=2 s(r+1)$ if $n=2 m$ and $|E(G)|=s(2 r+3)$ if $n=2 m+1$. In particular, if we take $r=\left\lfloor\frac{n}{4}\right\rfloor$ then (6) follows from (5).

참고 문헌

[1] P. M. Gibson and G.-H. Zhang, Combina torially orthogonal matrices and related graphs, Lin. Alg. Applics, 282 (1998), 83-95.
[2] K. B. Reid and C. Thomassen, Egde sets contained in circuits, Israel J. Math. 24 (1976), 305-319.
저자 소개

정내경(Nae-gyeongJeong)

1991년 8월 조선대학교 대학원 석 사 졸업
2002년 2월 우석대학교 대학원 이 학박사
서남대학교 컴퓨터응용수학과 조교수
※ 주 관심분야 : 신호처리

임형규(Hyung-kyu Im)

1982년 2월 전북대학교 전자공학 과 졸업 (공학사)
1985년 8월 전북대학교 대학원 전 자공학과 졸업(공학석사)
1996년 8월 전북대학교 대학원 전자공학과 졸업(공 학박사)
신경대학교 인터넷정보통신학과 조교수
※ 주 관심분야 : 신호처리

박세원(Se-won Park)

1990년 2월 성균관대학교 수학과 졸업 (이학사)
1992년 2월 성균관대학교 대학원 수학과 졸업(이학석사)
1996년 8월 성균관대학교 대학원 수학과 졸업(이학
박사)
신경대학교 교양과 교수
※ 주 관심분야 : 신호처리

[^0]: * 서남대학교 컴퓨터응용수학과(jnk3611@seonam.ac.kr)
 ** 교신저자, 신경대학교 인터넷정보통신학과(imh@sgu.ac.kr)
 *** 신경대학교 교양과(sewpark1079@naver.com)

 $$
 \text { 접수일자: 2010. } 03.31 \text { 심사(수정)일자: 2010. } 04.30 \text { 게재확정일자 : 2010. 06. } 14
 $$

