Reel-to-reel Deposition of Y₂O₃ Buffer Layer on Ni-W Metal Substrates by the RF-sputtering

K. C. Chung^{*,a}, T. J. Jeong^a, G. C. Choi^a, Y. K. Kim^a, X. L. Wang^b, S. X. Dou^b

^a Korea Institute of Materials Science, 531 Changwondaero, Changwon, 641-831, Korea

^b Institute for Superconducting and Electronic Materials, Univ. of Wollongong, Wollongong, NSW2522, Australia

(Received 8 March 2010 revised or reviewed 1 April 2010 accepted 14 April 2010)

RF-스퍼터링법을 이용하여 Ni-W 금속기판에 연속공정으로 증착된 Y₂O₃ 완충층 특성 연구 _{정국채^{*,a}, 정태정^a, 최규채^a, 김영국^a, X. L. Wang^b, S. X. Dou^b}

Abstract

Reel-to-reel deposition of Y_2O_3 has been performed on Ni-5%W metal substrates using the RF-sputtering method. The epitaxial orientation of Y_2O_3 buffer layers to the base bi-axially textured substrate was well identified using θ -2 θ , out-of-plane (ω), and in-plane (ϕ) scans in X-ray diffraction analysis. The optimization of Y_2O_3 seed layers in reel-to-reel fashion were investigated varying the deposition temperature, sputtering power, and pressure for its significant roles for the following buffer stacks and superconducting layers. Y_2O_3 were all grown epitaxially on bi-axially textured metal substrates at 380 watts and 5 mTorr in the temperature range of 600-740 °C with higher Y_2O_3 (400) intensities at ~710 °C. It was found that the $\Delta \omega$ values were 1-2° lower but the $\Delta \phi$ values were above 1° higher than that of Ni-W substrates. As the sputtering power increased from 340 to 380 watts, $\Delta \omega$ and $\Delta \phi$ values showed decreased tendency. Even in the small window of deposition pressure of 3-7 mTorr, the Y_2O_3 (400) intensities increased and $\Delta \omega$ and $\Delta \phi$ values were reduced as sputtering pressure increased.

Keywords : reel-to-reel rf-sputtering, Y2O3 buffer, metal substrate, epitaxy

I. Introduction

고온 초전도 물질을 이용한 선재개발은 장선 화 공정 적용 및 자기장하 임계전류 특성향상 등으로 최근 상용화에 근접해 있으며, 이러한 고특성의 초전도 선재를 이용한 다양한 응용기 기 개발에 박차를 가하고 있다 [1, 2]. 그러나 초전도 선재의 실용화에 있어 큰 문제점의 하 나는 제조비용일 것이며 이를 해결하기 위한 다양한 연구개발이 연구소 및 산업체를 중심으 로 진행되고 있다 [1].

고온 초전도 물질인 RE₁Ba₂Cu₃O_{7-x}의 초전도 전류는 이차원적 특성을 지니고 있어 테이프

^{*}Corresponding author. Fax : +82 55 280 3392 e-mail : kcchung@kims.re.kr

형태의 금속기판을 지지층으로 사용해야 한다. 또한 제조과정에서 고온 초전도 물질과 금속성 기판의 반응을 차단하고 초전도체의 이축 배향 결정성을 얻기 위해서는 하나 또는 몇 개의 완 층층이 필요하다. 특히 Ni 합금계를 금속지지 층으로 사용하는 기판의 경우 적어도 3개 이상 의 완충층을 필요로 하고 있다. 현재 가장 표 준적인 완충층으로 알려진 것이 Ni-W 금속기 판 위에 Y₂O₃을 seed layer로 증착하는 것이고 계속해서 확산 방지층인 YSZ, 초전도층과의 결정 배향성 향상을 위한 CeO₂가 증착되고 있 다 [3].

압연 및 열처리 공정으로 이축배향성을 가진 Ni-W 금속기판의 결정특성을 초전도층까지 이 어줄 수 있는 완충층 중 가장 중요한 층이 바 로 seed layer인 Y₂O₃이다. 즉 금속과 산화물의 이종 접합된 구조로서, 계면에서 금속산화물인 NiO가 생성되지 않아야 하며 금속산화물층은 충분히 산화되어 안정화됨과 동시에 이축배향 의 결정성장을 이루어야 한다 [4]. 또한 장선화 를 위한 제조비용이 고려되어야 한다.

M. S. Bhuiyan et al [5]은 유기화학증착법을 사 용하여 Y₂O₃ 완충층을 제조하였으며, Δω (6.22°) 그리고 △ (7.51°)로 우수한 결정성장특성과 기공 및 결함 없는 치밀하고 균일한 박막을 성 장시켰다. 다만 코팅 후 결정화를 위한 열처리 온도가 1150 ℃로 매우 높아 향후 저온공정 개 발이 필요할 것이다. 전자열증발법에 의한 RE₂O₃ 완충층 증착 및 결정성장에 관하여 M. Paranthaman et al에 의해 보고되었다 [6]. 전자 빆을 사용하여 금속 Y를 증발시키고 동시에 산화시키기 위하여 수증기를 주입하여 증착압 력을 1x10⁵ Torr로 유지하였다. 이축배향된 금 속 Ni기판상에 우수한 결정성장이 된 RE₂O₂완 충층을 얻었으며, Δω = 6.3° (Ni, 7.1°) 그리고 ΔΦ = 10.3° (Ni, 10.7°)를 얻었다. 또한 스퍼터링 타 겟으로 금속 Y를 사용하고 수증기를 산화제로 금속 Ni기판상에 Y2O1을 연속적으로 증착한 연구가 H. S. Kim et al [7]에 의해 보고되었다. 스퍼터링공정에서 금속타겟을 사용함으로써 높 은 증착율(24 nm/min)을 얻었으며, 금속타겟의 산화를 막기 위해 산소대신 수증기를 산화제로 사용하여 연속공정에 적용가능성을 제시하였 다.

Fig. 1. Schematic diagram of reel-to-reel RF-sputtering system.

한편, 산화물 타겟을 사용하는 스퍼터링 공 정은 다양한 기능성 박막을 제조하기 위해서 널리 사용되는 방법 중 하나로 산업체의 생산 공정에도 많이 사용되고 있다. 또한 본 연구에 서 채택한 Y₂O₃ 이외에 YSZ나 CeO₂ 산화물 박막의 경우 이미 스퍼터링에 의한 연구가 많 이 진행되었다 [8-10]. 하지만, 금속 Ni-5%W기 판 위에 직접 Y₂O₃ 타겟을 사용하여 스퍼터링 증착한 예는 거의 없으며 본 보고를 통하여 연 속증착 가능성 및 공정변수 최적화에 대한 연 구를 시도하였다 [11].

II. Experimental

이축 배향된 금속기판(Ni-5%W)상에 완충층 Y₂O₃를 rf-sputtering으로 증착하였다. 이축 배향 금속기판은 폭 4 mm 그리고 80 µm 두께로 독 일 Evico사에서 구입하여 사용하였다. 완충층 Y₂O₃은 Fig. 1에 나와 있는 Reel-to-reel multi-turn rf-sputtering system을 사용하여 증착하였다.

Stainless Steel 금속 테이프를 carrier로 사용하 였으며, 접점 용접기로 약 50 cm 길이의 Ni-5%W 금속 기판을 붙였다. Mechanical pump와 turbo molecular pump를 사용하여 진공 챔버를 7x10⁻⁶ Torr까지 배기한 후 증착가스 Ar를 챔버 외벽이 아닌 각각 3개의 개별 스퍼터링 건을 통하여 주입하였다. 가스주입량은 Mass Flow Controller로 20-40 CC/min로 조절하여 챔버내부 압력을 3-6 mTorr에 맞추었다. 증착온도는 몰리 브덴(Mo) 히터를 사용하였으며 Y₂O₃의 증착온 도 특성 조사를 위하여 600-740 ℃로 변화시켰 다. Ni-5%W 금속기판이 부착된 carrier tape는

Fig. 2. $Y_2O_3(400)/Ni(200)$ XRD intensity ratios prepared at deposition temperature from 600-740 °C in reel-to-reel rf-sputtering system. Inset shows the typical FE-SEM image of Y_2O_3 seed layer.

몰리브덴 히터주위를 5회 multi-turn을 시켜 원 하는 박막의 증착두께만큼 조절하였으며 증착 물질을 입히기 전에 약 30-40 min동안 선열처 리가 되도록 히터 위쪽으로 먼저 이동할 수 있 도록 구조를 배치하였다. 또한 이중 텐션 조절 장치를 설치하여 높은 온도에서도 금속기판이 늘어나는 것을 방지함과 동시에 균일한 온도 분포를 확보하기 위하여 이동속도와 동시에 조 절이 이루어지도록 설계되었다. 박막 증착이 끝난 후에는 증착영역에서 벗어나 기판온도는 자연스럽게 내려가며 계속 이동하여 다른 쪽 reel에 권선되었다. Y₂O₃ 완충층은 증착 후 X선 회절패턴 조사를 통하여 결정성장 특성을 조사 하였다.

III. Results and Discussion

이축 배향된 금속기판상의 Y₂O₃ 완충층의 결 정성장 특성을 조사하기 위하여 스퍼터링 공정 변수인 증착온도, 스퍼터링 파워, 증착압력을 변화시키면서 박막의 결정성장을 알아보았다. 실험방법에서도 언급되었듯이 금속기판은 히터 위쪽으로 먼저 이동되어 증착 전 열처리가 수 행되었다. 한편, 순수 Ar 가스만을 사용하였지 만 Y₂O₃의 에픽텍시 성장에는 큰 문제를 보이 지 않았다. 일반적으로 알려진 바에 의하면 Ar

Fig. 3. Out-of-plane FWHM values of $Y_2O_3(400)$ and Ni(200) (top) and In-plane FWHM values of $Y_2O_3(222)$ and Ni(111) (bottom) at the deposition temperature range of 690-740 °C.

에 H₂를 약 4 % 정도 첨가하여 Ni 금속기판표 면의 산화방지 및 표면 미세구조 변화를 통해 Y₂O₃의 에픽텍시 성장을 유도한다. 본 연구에 서는 Y₂O₃ 산화물 타겟을 사용 했으며, H₂ 가 스가 소량 첨가된 경우 타겟 표면이 심하게 에 칭되며 타겟의 특성에 영향을 주는 것으로 판 단되어 순수 Ar만 사용하였으며 실험 결과 Y₂O₃ 결정성장에는 큰 영향을 받지 않았다. 이 부분에 대해서는 좀 더 정밀한 추가 연구가 필 요할 것이다.

Fig. 2와 3에는 증착온도 변화에 따른 기판표 면에 대한 수직방향의 결정성장인 Y₂O₃ (400)/ Ni(200) 회절강도비 및 ω-scan의 반치 폭과 기판 평면에 대한 Y2O3(222)의 결정성장인 φ-scan 의 반치폭을 기판 Ni-5%W에 비교하여 나타내

Fig. 4. Out-of-plane FWHM values of $Y_2O_3(400)$ and Ni(200) (top) and In-plane FWHM values of $Y_2O_3(222)$ and Ni(111) (bottom) at the different sputtering power from 340 to 380 watts.

었다. 다른 증착변수인 스퍼터링 파워(380 watts), 증착압력(5 mTorr), 그리고 이동속도(8 cm/min) 는 고정하였다. 회절강도비는 증착온도 600 ℃ 에서 710 ℃까지는 증가하였으며 이후 740 ℃까 지는 줄어드는 경향을 보여주었다. 증착온도 600 및 650 ℃에서도 Ni(200) 회절강도에 대하 여 약 0.3 %이하의 매우 낮은 Y₂O₃(400) 방향 의 성장이 관찰되었으며 Y₂O₃(222) 회절은 보 이지 않았다. 이러한 온도에 따른 박막의 성장 특성은 다른 물질의 박막성장과는 다소 차이를 보여주었다. 실제 CeO₂의 경우 낮은 온도에서 는 CeO₂(200)방향으로 성장되었고 이후 증착온 도가 증가함에 따라 (111)방향의 성장이 관찰 되었다 [12]. Y₂O₃의 성장은 layer-by-layer가 아 닌 봉상 형태의 columnar structure(Fig. 2)가 뚜렷 하며 이러한 미세구조 차이에 의한 효과라고 사료되나 온도에 따른 Y₂O₃의 결정성장 특성 에 대하여는 좀 더 엄밀한 연구가 필요할 것이 다. 따라서 본 논문에서는 약 1 %이상의 회절 강도비를 갖고 있는 기판온도 690 ℃ 이상에서 증착한 Y₂O₃박막의 결정성장에 대하여 논의하 고자 한다. 한편, FE-SEM을 통한 단면사진 관 찰결과로 Y₂O₃ 박막의 두께는 온도에 따라 선 형적으로 증가하였으며 690 ℃에서 약 110 nm 에서 740 ℃에서는 180 nm로 측정되었다.

Fig. 3에서 수직방향의 반치폭 Δω는 Ni-W금 속기판에 대하여 1-2° 정도 감소하였으며 720 °C의 경우 2.85°로 최소값을 보여주었다. 그러 나 720 °C에서 반치폭 측정값은 약 1.2°로 큰 에러바를 보여주었다. Y2O3의 경우 단결정 기 판에서는 800℃의 비교적 높은 온도에서도 좋 은 결정 성장 특성을 보이고 있으나 금속기판 의 경우는 기판표면의 열적인 반응특성이 고려 되어야 한다. 즉 730, 740 °C의 경우 두께는 증 가하였으나 Y2O3(400)회절강도비는 줄어들고 기판에 대한 수직 및 평면 결정 배향성도 나빠 진 것을 알 수 있다. 이는 기판자체의 높은 온 도로 인한 금속기판 표면의 열적 grooving 발 생 및 반응물인 NiO, NiWO4가 생성되게 되며, 이로 인해 증착시 기판의 표면조도가 나빠진 것이 결정성장을 저해한 요인으로 사료된다 [3, 12]. Fig. 2와 비교해 보면 기판에 대하여 Y₂O₃ 의 c-축 회절강도비가 큰 증착온도 영역에서 수직방향성장 특성이 우수하다는 것을 알 수 있다. 한편 평면상의 결정성장을 보면 금속기 판 Ni-5%W의 경우 평균 ~5.65°인데 반해 Y2O3 (222)면의 반치폭은 1°이상 증가한 값을 보여주 었으며 온도에 대해서는 Δω와 비슷한 경향을 보여주었다.

앞선 실험에서 사용된 스퍼터링 파워(380 watts)는 일반적 용도에 비해 큰 값으로 400 watts 이상에서는 타겟에 금이 가거나 깨어지는 경우가 발생하였다. 따라서 파워를 줄여가는 실 험을 실시하였으며 파워변화에 따른 Y₂O₃ 완 충층의 증착 및 결정특성을 조사하였다. 이때 다른 증착변수는 앞선 실험을 참고하여 기판온 도는 710 ℃, 증착압력은 5 mTorr, 그리고 이동

Fig. 5. Out-of-plane FWHM values of $Y_2O_3(400)$ and Ni(200) (top) and In-plane FWHM values of $Y_2O_3(222)$ and Ni(111) (bottom) at the different sputtering pressure.

속도는 8 cm/min로 고정하였다. 스퍼터링 파워 를 380, 360, 그리고 340 watts로 줄임에 따라 Y₂O₃(400)/Ni(200) 회절강도비는 선형적으로 줄 어들었으며 Y₂O₃박막의 두께도 각각 150, 129, 그리고 120 nm로 줄어들었다. 파워를 낮춤으로 서 스퍼터링 yield가 줄게 되어 박막두께 및 회 절강도가 줄어드는 것은 당연할 것이다. 한편 금속기판에 대한 Y₂O₃ 완충층의 결정성장 특 성을 측정하면 Fig. 4와 같이 나타났으며, Y₂O₃ 박막의 수직방향의 반치폭 Δω와 평면상의 반 치폭 Δφ는 모두 파워를 줄임에 따라 증가하 는 경향, 즉 결정성장성이 나빠지는 것을 알 수 있다. 특히 340 watts에서는 Δω값이 금속기 판 Ni-W의 경우 평균 4.65°에 비하여 Y₂O₃의 경우 평균 4.86°로 오히려 더 증가하였다. 그리 고 평면상의 정렬도인 △ ϕ 값도 340 watts에서는 금속기판과의 차이가 4° 이상으로 벌어졌다. 스 퍼터링 파워의 감소에 따라 스퍼터링된 입자의 에너지도 같이 줄어들게 되고 이로 인해 기판 상에서 입자의 이동이 활발히 일어나지 못한 것이 결정성장에 영향을 미친 것으로 생각할 수 있다.

또 다른 스퍼터링 증착변수로 증착 중 가스 압력을 고려해 볼 수 있으며, 증착가스인 Ar의 유량을 각각 20, 30, 그리고 40 CC/min으로 Mass Flow Controller로 조절하였다. 이때 측정된 압 력은 각각 3, 5, 그리고 7 mTorr였다. 유량 감소 에 따라 Y₂O₃(400)의 회절강도가 줄어들었으나 박막의 평균두께는 163 nm(7 mTorr)에서 130 nm (5 mTorr) 그리고 134 nm(3 mTorr)로 약간 줄어 든 후 일정한 값을 나타내었다. Y₂O₃박막은 수 직방향의 반치폭 Δω은 최소값인 평균 3.17°로 측정되었고 평면상의 반치폭 △ ↓ 의 최소값 평 균은 6.6°로 모두 5 mTorr 압력에서 얻어졌다 (Fig. 5). 일반적인 스퍼터링 실험의 경우 증착 압력은 mTorr영역에서 이루어지며, 압력이 낮 아 플라즈마 자체가 켜지지 않거나 스퍼터링 vield가 낮은 경우를 제외하고는 크게 차이를 보이지 않는다. 본 스퍼터링 시스템의 경우도 3 mTorr로 낮은 증착압력 부근에서 이러한 일 이 발생하는 것으로 보여진다.

길이가 cm 단위의 짧은 시료 경우와 달리 수십 m에서 km급 장선의 초전도 선재를 제조 하기 위해서는 전체적인 증착 시간이 길어지게 되며 따라서 공정 중 변수를 일정하게 유지하 는 것이 매우 중요하다. 또한 증착속도를 증가 시키는 연구도 초전도 선재의 생산성이나 제조 비용측면에서 반드시 고려해야 할 것이다. 햣 후 본 스퍼터링 시스템을 사용하여 기판의 이 동속도 변화에 따른 결정성장 특성 실험 및 금 속기판의 폭이 10 cm 이상의 대면적 증착시 폭 방향에 대한 균일 증착 특성 실험에 대한 연구 를 진행할 예정이다. 또한 전체 완충층의 구조 에서 diffusion barrier인 YSZ층과 최종 capping layer인 CeO2도 본 multi-turn rf-sputtering system 로 증착하여 결정성장 특성 및 최적화 연구도 수행할 것이다.

IV. Summary

연속 multi-turn sputtering system을 이용하여 Ni-5%W 이축배향된 금속기판상에 seed 층인 Y₂O₃ 완충층을 증착하였다. 박막의 결정성장 특 성 조사를 위하여 증착온도, 스퍼터링 파워, 그 리고 증착압력을 변화시켰다. 690-740 ℃의 좁은 온도영역 범위에서도 Y₂O₃ 박막의 결정성장 특 성변화가 관찰되었다. 본 시스템의 경우, 710-720 ℃의 증착온도에서 높은 회절강도와 수직 및 수평상의 결정 배향도 값을 보여주었다. 또 한 스퍼터링 파워 감소에 따라 두께 및 회절강 도가 줄어듦과 동시에 결정배향성도 나빠지는 경향을 볼 수 있었으며 약 380 watts 부근에서 우수한 결정성장을 관찰하였다. 증착압력 변화 실험의 경우에는 5 mTorr(30 CC/min)에서 가장 좋은 결정배향 특성을 얻을 수 있었다.

Acknowledgments

This work was supported by the Global Partnership Program from the National Research Foundation of Korea (M60602000012) through a grant provided by the Korean Ministry of Education, Science & Technology (MEST).

References

 A. Malozemoff, S. Fleshler, M. Rupich, C. Thieme, X. Li, W. Zhang, A. Otto, J. Maguire, D. Folts, J. Yuan, H. Kraemer, W. Schmidt, M. Wohlfart, H. Neumuller, Supercond. Sci. Technol. 21 (2008) 034005.

- [2] O. Tsukamoto, Phsica C 468 (2008) 1101.
- [3] K. Leonard, A. Goyal, S. Kang, K. Yarborough, D. Kroeger, *Supercond. Sci. Technol.* 17 (2004) 1295.
- [4] T. Aytug, J. Wu, B. Kang, D. Verebelyi, C. Cantoni, E. Specht, A. Goyal, M. Paranthaman, D. Christen, *Physica C* 340 (2000) 33.
- [5] M. Bhuiyan, M. Paranthaman, S. Kang, D. Lee, K. Salama, Physica C 422 (2005) 95.
- [6] M. Paranthaman, D. Lee, A. Goyal, E. Specht, P. Martin, X. Cui, J. Mathis, R. Feenstra, D. Christen, D. Kroeger, *Supercond. Sci. Technol.* **12** (1999) 319.
- [7] H. Kim, C. Park, R. Ko, D. Shi, J. Chung, H. Ha, Y. Park, K. Song, D. Youm, *Physica C* 426-431 (2005) 926.
- [8] A. Goyal, R. Feenstra, M. Paranthaman, J. Thompson, B. Kang, C. Cantoni, D. Lee, F. List, P. Martin, E. Lara-Curzio, C. Stevens, D. Kroeger, M. Kowalewski, E. Specht, T. Aytug, S. Sathyamurthy, R. Williams, R. Ericson, *Physica C* 382 (2002) 251.
- [9] T. Aytug, J. Wu, B. Kang, D. Verebelyi, C. Cantoni, E. Specht, A. Goyal, M. Paranthaman, D. Christen, *Physica C* 340 (2000) 33.
- T. Haugan, P. Barnes, T. Campbell, A. Goyal, A. Gapud, L. Heatherly, S. Kang, *Physica C* 425 (2005) 21.
- [11] W. Zhang, M. Rupich, U. Schoop, D. Verebelyi, C. Thieme, X. Li, T. Kodenkandath, Y. Huang, E. Siegal, D. Buczek, W. Carter, N. Nguyen, J. Schreiber, M. Prasova, J. Lynch, D. Tucker, S. Fleshler, *Physica C* 463-465 (2007) 505.
- [12] S. Kreiskott, M. Getta, B. Monter, H. Piel, N. Pupeter, *Physica C* 383 (2003) 306.