Temperature Dependent Angle Resolved Photoemission Spectroscopy Study of Pseudo-gaps in $Sm_{1.82}Ce_{0.18}CuO_4$

각분해 광전자분석 실험을 이용한 $Sm_{1.82}Ce_{0.18}CuO_4$ 물질의 온도에 따른 가짜 갭 연구

  • Song, D.J. (Institute of Physics and Applied Physics, Yonsei U) ;
  • Choi, H.Y. (Institute of Physics and Applied Physics, Yonsei U) ;
  • Kim, Chul (Institute of Physics and Applied Physics, Yonsei U) ;
  • Park, S.R. (Institute of Physics and Applied Physics, Yonsei U) ;
  • Kim, C. (Institute of Physics and Applied Physics, Yonsei U) ;
  • Eisaki, H. (National Institute of Advanced Industrial Science and Technology)
  • Received : 2010.03.04
  • Accepted : 2010.04.12
  • Published : 2010.04.30

Abstract

There are theoretical and experimental evidences for the pseudo-gap in electron doped cuprates being due to interaction between electrons and anti-ferromagnetism(AFM). A remaining issue is on how AFM correlates with pseudo-gap, and eventually with superconductivity. To elucidate the issue, we have performed temperature dependent angle-resolved photoemission studies of an e-doped cuprate superconductor $Sm_{2-x}Ce_xCuO_4$(SCCO) x=0.18 at 20K and 150K. In the case of $Nd_{2-x}Ce_xCuO_4$, the most well known e-doped cuprate, pseudo-gap disappears at around 100 K for x=0.17. Our experimental result reveals that the pseudo-gap of SCCO exists even at 150K for x=0.18. This result implies that the AFM of SCCO survives even in x=0.18, which agrees with previously reported phase diagram of SCCO. Yet, the superconductivity disappears around x=0.18 for both NCCO and SCCO in spite of the difference in the magnetic order. This result sheds a light on the disappearance of superconductivity on the over-doped side.

Keywords

References

  1. J. Bardeen, L.N. Cooper, and J.R. Schrieffer, "Theory of superconductivity", Phys. Rev. 108, 1175 (1957). https://doi.org/10.1103/PhysRev.108.1175
  2. A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, "Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system", Nature 363, 56 (1993). https://doi.org/10.1038/363056a0
  3. Y. Onose, Y. Taguchi, K. Ishizaka, and Y. Tokura, "Doping Dependence of Pseudogap and Related Charge Dynamics in $Nd_{2-x}Ce_xCuO_4$", Phys. Rev. Lett. 87, 217001 (2001). https://doi.org/10.1103/PhysRevLett.87.217001
  4. A. Zimmers, J. M. Tomczak, R. P. S. M. Lobo, N. Bontemps, C. P. Hill, M. C. Barr, Y. Dagan, "Infrared properties of electron-doped cuprates: Tracking normal-state gaps and quantum critical behavior in $Pr_{2-x}Ce_xCuO_4$", Europhys. Lett. "70, 225 (2005). https://doi.org/10.1209/epl/i2004-10480-2
  5. N. L. Wang, G. Li, D. Wu, X. H. Chen, C. H. Wang, and H. Ding," Doping evolution of the chemical potential, spin-correlation gap, and charge dynamics of $Nd_{2-x}Ce_xCuO_4$", Phys. Rev. B 73, 184502 2006. https://doi.org/10.1103/PhysRevB.73.184502
  6. N. P. Armitage, D. H. Lu, C. Kim, A. Damascelli, K. M. Shen, F. Ronning, D. L. Feng, P. Bogdanov, "Anomalous Electronic Structure and Pseudogap Effects in $Nd_{1.85}Ce_{0.15}CuO_4$", Phys. Rev. Lett. 87, 147003 (2001). https://doi.org/10.1103/PhysRevLett.87.147003
  7. H. Matsui, K. Terashima, T. Sato, T. Takahashi, S.-C. Wang, H.-B. Yang, H. Ding, T. Uefuji, and K. Yamada, "Angle-Resolved Photoemission Spectroscopy of the Antiferromagnetic Superconductor $Nd_{1.87}Ce_{0.13}CuO_4$: Anisotropic Spin-Correlation Gap, Pseudogap, and the Induced Quasiparticle Mass Enhancement", Phys. Rev. Lett. 94, 047005 (2005). https://doi.org/10.1103/PhysRevLett.94.047005
  8. H. Matsui, K. Terashima, T. Sato, T. Takahashi, M. Fujita, K. Yamada, "Direct Observation of a Non monotonic $d_x^2_{-y}^2$-Wave Superconducting Gap in the Electron-Doped High-$T_c$ Superconductor $Pr_{0.89}La\;Ce_{0.11}CuO_4$", Phys. Rev. Lett. 95, 017003 (2005). https://doi.org/10.1103/PhysRevLett.95.017003
  9. Wu Jiang, J. L. Peng, Z. Y. Li, R. L. Greene, Phys. Rev. B, 42, 08151 (1993).
  10. H. Matsui, T. Takahashi, T. Sato, K. Terashima, H. Ding, T. Uefuji, K. Yamada, "Evolution of the pseudo gap across the magnet-superconductor phase boundary of $Nd_{2-x}Ce_xCuO_4$", Phys. Rev. B, 75, 224514 (2007). https://doi.org/10.1103/PhysRevB.75.224514
  11. T. Sasagawa, K. Unozawa, K. Ohishi, S. Pyon, K. H. Satoh, A. Koda, R. Kadono, and H. Takagi, KEKMSL Progress Report (2006).
  12. K. Unozawa, private communication (2005).