DOI QR코드

DOI QR Code

Image Segmentation of Special Area Using the Level Set

레벨셋을 이용한 특정 영역의 영상 세그먼테이션

  • 주기세 (목포해양대학교 해상운송시스템학부) ;
  • 조덕상 (목포해양대학교 해상운송시스템학부)
  • Received : 2009.12.01
  • Accepted : 2009.12.15
  • Published : 2010.04.30

Abstract

Image segmentation is one of the first steps leading to image analysis and interpretation, which is to distinguish objects from background. However, the active contour model can't exactly extract the desired objects because the phase only is 2. In this paper, we propose the method which can find the desired contours by composing the initial curve near the objects which have intensities of special range. The initial curve is calculated by the histogram equalization, the Gaussian equalization, and the threshold. The proposed method reduce the calculation speed and exactly detect the wanted objects because the initial curve set near by interested area. The proposed method also shows more efficient than the active contour model in the results applied the CT and MR images.

영상 세그먼테이션은 배경으로부터 객체들을 구별하는 것으로서, 영상 분석과 해석을 하는데 있어서 첫 번째 단계에 해당한다. 그러나 활성 외곽선 모델은 위상이 2개밖에 없으므로 정확하게 원하는 객체들을 추출할 수가 없다. 본 논문에서 원하는 특정한 범위의 명암도를 갖는 객체들을 추출하기 위해서 초기 곡선을 객체들 근처에 구성함으로써 바라는 윤곽을 찾는 방법을 제안한다. 초기 곡선은 히스토그램 평활화, 가우시안 평활화, 임계치를 이용하여 구한다. 제안한 방법은 초기 곡선을 관심영역에 최대 근접시키므로 계산 속도를 줄이고 원하는 영역을 정확하게 추출할 수 있다. CT 영상과 MR 영상에 적용한 결과 제안한 방법이 활성 외곽선 모델보다 더 효과적임을 보였다.

Keywords

References

  1. M. Kass, A. Witkin, and D. Terzopoulos., " Snakes: active contour models," Intl J. Comp. Vis., 1:321-331, 1987.
  2. C. Xu and J. Prince., "Snakes, shapes, and gradient vector flow," IEEE Trans. Imag. Proc., 7:359-369, 1998. https://doi.org/10.1109/83.661186
  3. C. Li, C. Xu, C. Gui, and M. D. Fox, "Level set evolution without reinitialization: A new variational formulation," In IEEE Conference on Computer Vision and Pattern Recognition(CVPR)., volume 1, pages 430-436, 2005.
  4. C. Li, J. Liu, and M. D. Fox., "Segmentation of external force eld for automatic initialization and splitting of snakes," Pattern Recognition, 38(11):1947-1960, 2005. https://doi.org/10.1016/j.patcog.2004.12.015
  5. Cremers, D., "A multiphase level set framework for variational motion segmentation," In Scale Space Methods in Computer Vision, L. D. Griffin and M. Lillholm (Ed.) voL 2695 of Lecture Notes in Computer Science, Springer, Berlin, pp. 599-614. 2003.
  6. T. Chan and L. Vese., "Active contours without edges," IEEE Trans. Imag. Proc., 10(2):266-277, 2001. https://doi.org/10.1109/83.902291
  7. L. Vese and T. Chan., "A multiphase level set framework for image segmentation using the mumford and shah model," Intl J. Compo Vis., 50:271-293, 2002. https://doi.org/10.1023/A:1020874308076
  8. A. Tsai, A. Yezzi, A. Willsky., "Curve Evolution Implementation of the Mumford-Shah Functional for Image Segmentation, Denoising, Interpolation, and Magnication," IEEE Transactions on Image Processing, vol. 10, no. 8, pp. 1169-1186, August 2001. https://doi.org/10.1109/83.935033
  9. C Li, CY Kao, JC Gore, Z Ding., "Implicit Active Contours Driven by Local Binary Fitting Energy," presented at the IEEE Conf. Computer Vision and Pattern Recognition, 2007.
  10. D. Mumford and J. Shah., "Optimal approximations by piecewise smooth functions and associated variational problems," Commun. Pure Appl. Math., 42:577-685, 1989. https://doi.org/10.1002/cpa.3160420503