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A Novel Two-Stage Approach in Rectifying BioHash’s
Problem under Stolen Token Scenario

Meng-Hui Lim, MinYi Jeong and Andrew Beng Jin Teoh, Member, KIMICS

Abstract—Over recent years, much research attention has
been devoted to a two-factor authentication mechanism
which integrates both tokenized pseudorandom numbers
with user specific biometric features for biometric
verification, known as Biohash. The main advantage of
Biohash over sole biometrics is that Biohash is able to
achieve a zero equal error rate and provide a clean
separation of the genuine and imposter populations, thereby
allowing elimination of false accept rates without imperiling
the false reject rates. Nonetheless, when the token of a user is
compromised, the recognition performance of a biometric
system drops drastically. As such, a few solutions have been
proposed to improve the degraded performance but such
improvements appear to be insignificant. In this paper, we
investigate and pinpoint the basis of such deterioration.
Subsequently, we propose a two-level approach by utilizing
strong inner products and fuzzy logic weighting strategies
accordingly to increase the original performance of Biohash
under this scenario.

Index Terms—BioHash, biometric, security.

I. INTRODUCTION

CLASSICAL token/password-based authentication
methods have been widely deployed over decades to
provide users ability for selecting a password freely so
that the password can be easily remembered and can be
kept secret. In the case where a password is found to be
compromised, it can be revoked and reissued
conveniently. Such exact knowledge-based authentication
method would grant a user access only when a query
password perfectly matches an enrolled password.
Nevertheless, for applications that desire a high level of
security, classic authentication method may not be
sufficiently secure. This is because most user-selected
passwords probably come from a small subset of the full
password space and such weak passwords with low
entropy can be casily guessed by an adversary. Besides, if
a token is stolen, a system may mistakenly authenticate an
imposter who possesses it. In order to eliminate these
devastated possibilities, biometric authentication method
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appears to be a more reliable and promising option. The
main advantage of biometric authentication is that it bases
recognition on an intrinsic aspect of a human being and
the usage of biometric requires the person to be
authenticated to be physically present at the point of
authentication. Since biometric is inextricably linked to
the users themselves, it is impossible for biometric to be
lost (token) or forgotten (password).

Despite  possessing  aforementioned  functional
advantage, biometric authentication suffers a fatal
drawback: it is possible for one’s biometric to be
compromised and once it is compromised, it will be
irrevocable. One notable approach in overcoming such
shortcoming is to distort or transform the biometric
features intentionally in a repeatable but nonreversible
manner to protect sensitive user-specific features [1].
Instead of using the original features for enrolment and
verification, the converted features are used. If such a
cancellable biometric template happens to be
compromised, the distortion characteristics of the same
original biometric can be changed and this would map the
biometric features to a new template. As outlined by Teoh
et al. [6][7], the four principal objectives of a cancellable
biometric template include:

¢ Diversity: The same cancellable template cannot be
used in two ditferent applications.

e Reusability: Straightforward revocation and reissue in
the event of compromise.

e One-way  Transformation: Non-invertibility of
template computation to prevent recovery of
biometric data.

e Performance: The cancellable biometric template
should not deteriorate the recognition performance.

In 2004, Teoh et al. [5] put forward a two-factor
authenticator based on iterative inner products between
tokenized pseudorandom numbers and user-specific
biometric features. The resultant inner product bitstrings
is termed as Biohash due to its non-invertibility property.
Biohash is cancellable since if it is compromised, it can be
revoked and reissued straightforwardly. By renewing the
password or seed of the token, the newly converted
biometric features will be utterly uncorrelated to the
compromised ones since the set of token-generated
pseudorandom numbers is random and independent of any
other random bit strings. In terms of performance,
Biohash is capable of improving recognition efficacy by
providing a clean separation between genuine and
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imposter distributions, which results in zero false accept
rate (FAR) and false reject rate (FRR) errors in the
recognition performance. In fact, this is almost impossible
to be achieved by using merely feature extraction scheme
in practical case where FAR and FRR are naturally
interdependent.

However, Kong et al. [2] have reported a year later that
such claim on perfect accuracy of Biohash’s recognition
performance appears to be flawed when the token is
compromised. By combining different sets of biometric
features with the same set of tokenized pseudorandom
numbers, their empirical results illustrate that the
projected features become less discriminative, causing the
recognition performance to drop drastically.

Subsequently, Teoh et al. presented a theoretical
analysis of the Biohash technique in [6] using random
multispace quantization as an analytic mechanism and
justified the performance deterioration under stolen token
scenario. :

To rectify such a problem, Lumini and Nanni [3]
introduced a few ideas by augmenting projection spaces
and permute several feature coefficients to improve the
degraded performance. However, the enhanced
performance is still below the original performance of a
recognition system without using Biohash technique.

In this paper, we propose a novel 2-stage approach to
eradicate the degradation based on strong inner products
utilization and fuzzy logic weighting strategies. The
structure of this paper is organized as follows. In the next

section, we will elaborate the original Biohash framework.

In section III, we will cover a detailed explanation on our
proposed countermeasures. In the sequel, we will describe
our experiment settings in section IV and present our
experimental findings and demonstrate its superiority over
the original Biohash scheme in section V. Finally, we
conclude this paper in section V1.

II. PRELIMINARIES

The general Biohash framework comprises of three

stages, as described in Figure 1:

a) Feature Extraction: Projection of biometric features to
a lower-dimensioned and more discriminative feature
domain using linear transformation such as Principle
Component Analysis (PCA) [8] so as to reduce
computational complexity.

b) Inner Product: Projection of biometric features onto
multiple random subspaces stems from dot product
between biometric features and external input such as
tokenized pseudorandom numbers. Note that before
inner product operation is performed,
orthogonalization of such pseudorandom numbers is
required, for example, by applying Gram Schmidt
algorithm on row vectors so that a set of orthogonal
column vectors can be obtained for inner product
operation. The reason of using orthogonal numbers is

to render each resultant inner product clement to be
independent of all others, so that any legitimate
variations on an element would not propagate through
the preceding or subsequent elements.

¢) Threshold Binarization: Quantization of each
individual map based on a preset threshold, usually set
to 0. Repetition of this procedure in obtaining multiple
bits eliminates inter-bit correlations.
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Fig. 1 An overview of Biohash framework.
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Fig. 2 Comparative Performance of FDA, RMQ-90 and
its two compromised scenarios in ROC [6]

However, as token is compromised (refer to Scenario 2
in Figure 2), so does the orthogonal projection matrix, the
recognition performance of Random Multispace
Quantization (RMQ = Biohash) declines significantly and
it becomes slightly poorer than the Fisher Discriminant
Analysis (FDA) feature extraction technique, as shown in
the comparison of Receiver Operating Curve (ROC)
below.

III. RATIONALE OF OUR 2-STAGE
APPROACH

A. Inner Product Approach
An inner product of two vectors € and fi is defined as

& - it = |§]*|ii*cos @ 1)



INTERNATIONAL JOURNAL OF KIMICS, VOL. 8, NO. 2, APRIL 2010

175

where |€| denotes magnitude of vector & and © denotes the

angle between the two vectors. The resultant value

signifies scalar of the component of € in the direction of i

and vice versa. Essentially, an inner product is considered

strong when © = (° (both vectors are aligned) whereas an
inner product is said to be weak when © = 90° (both
vectors are orthogonal).

In Biohash, a resultant inner product element may take
any positive and negative values uniformly. Since every
inner product element is quantized using threshold 0, we
conjecture that any clements that take values near 0 are
unreliable and should not be used for verification. An
intuitive reasoning is that if an inner product element of
the vector is weak, any slight legitimate variation in query
biometric feature of the same element position may very
likely caused a quantization error (since an opposite
signed inner product element is likely to be resulted in
this case). Therefore, it is clear that weak inner product is
less error-tolerant. Intuitively, we can regard the strength
of inner product as a reliability measure. The stronger the
resulted inner product element is, the more reliable such
an element would be. Since the entire elements in an inner
product vector are quantized and used for verification
regardless of their reliability, this explains the
performance deterioration of original Biohash scheme in
the less discriminative case where a compromised token is
used to project different biometric features onto a
common subspace.

Therefore, in this approach, we improve the
discrimination of resultant quantized bit vectors by
proposing several strategies which utilize strong inner
products for verification comparison.

o Discard strategy: Based on a discarding threshold a,
we discard weak inner product elements of cach vector
with values below a.

¢ Discard and replace strategy: We generate N inner
product vectors by integrating N different orthogonal
projection matrixes with the same feature vector. Based
on a discarding threshold a, we discard weak inner
product elements of the first inner product vector. By
treating the first vector as our referenced vector, we
iteratively replace as many as possible the discarded
inner product elements in the first vector with strong
elements (with values above o) from the other N - 1
vectors. Consequently, the resultant (first) inner product
vector is used for verification comparison.

s Weighting strategy: In spite of discarding, we weight
each inner product element according to their strength
and the results are concatenated into a weight vector w
of the same length as inner product vector during
enrolment stage. During the experiment, we investigate
several distinct weighting functions, g such as linear,
quadratic, square root and a few others, and
subsequently select an optimum g that produces the
largest EER improvement.

IPW=g(w) )

Note that by carrying out this approach, we are also
required to maintain an additional weight vector per user
which is usually stored in the database. Correspondingly,
for verification comparison, we modify the hamming
distance computation between two bit sequences to be

HD(A,B)=IPW * XOR(A4,B) 3)

with HD(*) denoting the hamming distance computation,
IPW denoting the inner product weight vector, A and B
denoting two binary bit strings to be matched.

B. Fuzzy Logic Approach

Fuzzy logic is a form of multi-valued logic derived
from fuzzy set theory to deal with approximate reasoning.
Given imprecise, noisy or incomplete input information,
fuzzy logic is able to offer a definite conclusion. Fuzzy
logic variables usually range between 0 and 1.

As multiple sets of biometric features of the same class
are quantized and converted into binary bit strings, intra-
class variation usually exist and it is what we wish to
minimize. Since some feature information is lost during
each quantization process, the output information
becomes incomplete. Each binary string can also be
thought as a noisy version of one another. On the other
hand, variations in biometric features of distinct classes
should be maximized so that the output bit string that
represents each user can be made more discriminative.
Therefore, to increase the recognition performance, we
adopt the concept of fuzzy logic to model intra-class
variations as well as inter-class variations in order to
provide a reliability measure to each and every binary
output bit at the training stage.

BI. Tackling Inira-class Variation:

Suppose that there are # training feature vectors with m
elements for each of k distinct classes. After being
binarized, we obtain a group of » binary vectors within
class j, denoted by ¥ = {¥/\, b'5, ..., V) where the n-th
binary vector of class j can be denoted as &/, = {¥/,1, ¥ ...
Y.} with ¥, representing the m-th bit of n-th binary
vector in class j.

Initially, we average » binary vectors of each of the &
classes with respect ‘to their bit locations,

W = iZﬁL&f]; =12,..k and derive a unique

weight vector for each of the k classes, FLH# = £ (E‘r)
It=12 ..% based on a pre-defined membership
function f. Note that in fuzzy logic, a membership
function represents the magnitude of each input and
assigns an output weight for each of the inputs. To seek
for an optimum intra-class membership function, we try
out a linear (Intra-Linear) and two quadratic (Intra-Quad]
and Intra-Quad2) membership functions in our simulation,
as shown in Figure 3.

Notice that the membership functions in Figure 3 are
selected based on the reliability measure. For instance, the
3rd bit position of all n vectors has agreeing binary bits
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(all “0’ or all ‘1’), yielding an average value of ‘0’ or ‘1°.
Therefore, an input of ‘0’ or ‘1’ to the membership
function produces a membership value of ‘1°, indicating
that the 3rd bit position is highly reliable since intra-
variation of such bit is minimal. In the case where
reliability is low, it is easy to see that equal disagreeing
bits at a particular bit location of n vectors which yield an
average value of 0.5 would produce a membership value
of 0.

During the wverification comparison, we alter the
hamming distance computation between two bit
sequences to be

ED{4, B} = FLW! » X0R(A. B} )

with HD (¢) denoting the hamming distance computation,
FLW denoting the user-specific fuzzy logic weight vector,
A and B denoting two binary bit strings to be matched.

B2. Tackling Inter-class Variation:

In handling inter-class variations, similar operations
can be carried out as in deriving intra-class weight vector,
except that we average n binary vectors of all j classes
according to the following formulation:

1 n R .
= — - 5
5 ﬂk;;;ﬁf -

Consequently, a global weight vector FLW = £ {5}
can be derived. To determine a suitable inter-class
membership function, we attempt a linear (Intra-Linear)
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Fig. 3 Intra-class Membership Functions
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and two quadratic (Inter-Quadl and Inter-Quad2)
membership functions in our simulation, as shown in
Figure 4.

Since our objective is to maximize inter-class variation
at each bit location, a suitable membership function would
give a membership value of ‘1’ when the average value at
a bit position is 0.5. :

During the matching process, the hamming distance
computation is altered similarly as in Eq. (4).

IV. DATA SET AND EXPERIMENT
SETTINGS

In the experiments, we examine the efficiency of our
approach for face recognition on ORL data set [4] by
adopting PCA [8] as our face feature extractor. ORL data
set contains face images of 40 individuals with 10 images
each, yielding a total of 400 images. Out of these 400
images, 200 images (5 samples x 40 individuals) are
used for generating eigenvectors and deriving fuzzy logic
weight vectors while another 200 images (5 samples x 40
individuals) are used for testing purpose. A total of 200
quantized inner product elements (binary bits) are used in
representing cach identity.

To generate the imposter distribution (for FAR test),
we match the first image of an individual against the first
image of all other individuals, resulting in a total of
(40%x39)/2=780 comparisons. By repeating the same
procedure for all other images of an individual, we
perform a total of 780 x 5 = 3900 evaluations. On the
other hand, in generating the genuine distribution (for

Intra-Quad2
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FRR test), we match the first image against all other
images of an individual and repeat this procedure for all
other individuals, yielding a total of (5 x 4 x40 )/2=400
computations. By generating both genuine and imposter
distributions, we are thus able to compute the equal error
rate (ERR) and adopt it as our measure in characterizing
the security level of a biometric authentication system.
EER refers to the average value of FAR and FRR. The
same procedures are repeated 20 times for each of the
following experiments. The results are then averaged in
order to reduce statistical inconsistencies caused by the
employment of different sets of generated psendorandom
numbers.

V. RESULTS AND DISCUSSIONS

The objective of our experiments is to evaluate the
performance of our approaches in comparison to that of
the original Biohash scheme under the compromised
token situation. Experiments 1-3 examine different

settings of our strong inner product approach;
Experiment 4 examines our fuzzy logic weighting
approach.

It is clear from the simulation results that under
compromised token assumption, the performance of the
original Biohash scheme achieves a slightly lower EER
(= 0.2%) than the PCA feature extraction scheme alone,
which is in contrast to a few results reported in [2][6].
This may be due to different experiment settings such
as number of allocated training images and the number
of binary bits used to represent an identity,

In experiments 1 and 2 (tables 1 and 2 respectively),
we wish to find an optimum discarding threshold, o
that would produce the lowest possible EER.
Therefore, we conduct a systematic search by using a
set of thresholds ranging from 0.025 to 0.5 with a step
size of 0.025 for discard strategy and 0.1 to 0.7 with a
step size of 0.03 for discard and replace strategy. Note
that the choice of discarding threshold is strictly
limited. If it is set exceeding a certain threshold, the
binarized feature vector may become less
discriminative since, insufficient bits will be resulted to
represent each identity as a consequence of discarding
weak inner product eclements, causing recognition
performance to drop drastically. This is where the
discard & replace strategy is introduced to supplement
this deficiency. Note that in experiment 2, N is set to
20, which means that 20 sets of random projection
matrixes and thus 20 quantized inner product vectors
are generated for implementation of the discard and
replace strategy. However, despite our effort, both
cases produce rather insignificant EER improvements:
0.2% for discard strategy while 0.1% for discard &
replace strategy.

TABLE 1
(EXPERIMENT 1) EER COMPARISON USING
DISCARD APPROACH WITH VARIOUS DIFFERENT

DISCARDING THRESHOLDS
Method T?lirf;’:lid“,gu EER (%)
PCA - 11.1730
Biohash - 3.9069
e 0 10.9675 Threshold a | PER ()
Biohash
0.025 109935 | 0275 (Besty | 10.7575
0,050 10,9719 0.300 10,7782
0.075 10,9457 0.325 10.7802
[Stolen 0.100 10.9631 0.350 10.7977
Token] 0.125 10.9489 0375 10.8459
Discard 0.150 10.9033 0.400 10.7964
Approach 0.175 109153 0425 10.8140
0.200 10.8675 0.450 108577
0.225 10.8803 0475 10.8895
0.250 10.8932 0.500 10.8961
TABLE 2

(EXPERIMENT 2) EER COMPARISON USING
DISCARD AND REPLACE APPROACH WITH
DIFFERENT DISCARDING THRESHOLDS

Discarding

Method Threshold, EER (%)
PCA - 11.1730
Biohash - 3.7616 Discarding ,
[Sto]:cn Token] 0 10.9369 Threshold, « EER (%)
Biohash
0.13 10.9686 043 10.9517
0.16 10.9786 0.46 10.9779
0.19 10.9633 0.49 10.9439
[Stolen Token] 0.22 11.0236 0.52 109712
Discard and 0.25 11.0539 0.55 11.0210
Replace
Approach 0.28 10.8935 0.58 10.9441
(N=20) 0.31 (Best) | 10.8531 0.61 11.0161
0.34 10.8538 0.64 11.2095
0.37 10.8689 0.67 11.3234
0.40 10.8623 0.70 11.5692

In order to further vindicate our strong inner product
utilization approach, inner product elements are weighted
based on their strength using different weighting functions
g before being quantized in experiment 3 (table 3). As a
result, IPW = gives the lowest EER value among
several weighting functions as shown in Table 3, yielding
an approximate improvement of 0.7% under stolen token
scenario.
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TABLE 3
(EXPERIMENT 3). EER COMPARISON USING
INNER PRODUCT WEIGHTING WITH DISTINCT

WEIGHTING FUNCTIONS
Method Weighting Function, g EER (%)
PCA - 11.1730
Biohash - 3.9437
[Stolen Token) )
Biohash 10.8993
w? 14.2181
[Stolen Token] w 11.0698
Inner Product s -
- Weighting e 10.2350
Approach 3 (Best) 10.1907
[ 10.2421

In experiment 4 (table 4), it is observed that the first
quadratic membership function (Intra-Quadl) modeled
for intra-class variation achieves the best performance
among all tested membership functions, resulting in an
EER enhancement of 0.4, However, the performance of
all membership functions modeled for inter-class
variations is very close to that of the original Biohash
scheme under stolen token scenario, resulting in trivial

improvement.

(EXPERIMENT 4). EER COMPARISON USING
FUZZY LOGIC WEIGHTING WITH DISTINCT

TABLE 4

MEMBERSHIP FUNCTIONS
Membership
Method Function, / EER
PCA - 11.1730
Biohash - 3.9245
[Stole?n Token] ) 10,5507
Biohash
Intra-Linear 10.7941
Intra-Quad1 (Best) 10.1445
[Stolen Token] Intra-Quad2 10.2350
Fuzzy Logic Weighting -
Approach Inter-Linear 10.5574
Inter-Quad1 10.5525
Inter-Quad2 10.5704

By integrating the best configuration of the inner
product weighting and fuzzy logic weighting approaches,
we are able to achieve a total EER improvement of 1.0 as
shown in Table 5, which is very close to the sum of the
best individual results from Experiment 3 and 4. Note that
in our integrated approach, the modified hamming
distance computation during the matching process is
calculated as

ENCA BY = (FLW! £ [BWY « X0R(LET  (6)

where FLW denotes the j-th user’s fuzzy logic weight
vector, IPW denotes the inner product weight vector, 4
and B denoting two binary bit strings to be matched. This
enables us to combine both weight vectors in our
hamming distance calculation.

VI. CONCLUSIONS

In this paper, we have employed a 2-stage methodology
to rectify the degradation problem of Biohash when the
token is compromised. In our first approach, we utilize
strong inner product elements for matching by

1) discarding weak elements

2) discarding and replacing weak elements

3) weighting inner product elements based on their

individual strength

to minimize the quantization error effect caused by weak
clements, especially in the case where all different
feature vectors are projected onto a common subspace.
Subsequently, in our second approach, we further
minimize the within-class variations by adopting fuzzy
logic weighting strategy to weight every bit of the binary
strings in the training data set according to its reliability
(probability of occurrence). Empirical results shown that
by using appropriate weighting function and
membership function respectively, both inner product
weighting and fuzzy logic weighting methodologies are
capable of achieving some improvement in the system
performance. The combination of these two techniques
in fact produces the best results with an EER
improvement of about 1.0%.

TABLE 5

A GLANCE OF EER IMPROVEMENT USING THE BEST CONFIGURATION OF EACH
APPROACH/COMBINATION OF APPROACHES

Strategy
. Discard & Inner Product Fuzzy Logic Best o / Weightin
Discard Replace Weighting We?éhtir?g /Membershif func{:%. EER Improvement

Yes No No No a=0.275 (.2
No Yes No No o=0,31 0.1
No No Yes No W.func: FLW = 3%F 0.7
No No No Yes M.func: Intra-Quadl 0.4
No No Yes Yes Uy 4 Intra-Quad 1.0
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