Social Network Analysis using Common Neighborhood Subgraph Density

공통 이웃 그래프 밀도를 사용한 소셜 네트워크 분석

  • Received : 2009.12.24
  • Accepted : 2010.02.02
  • Published : 2010.04.15

Abstract

Finding communities from network data including social networks can be done by clustering the nodes of the network as densely interconnected groups, where keeping interconnection between groups sparse. To exploit a clustering algorithm for community detection task, we need a well-defined similarity measure between network nodes. In this paper, we propose a new similarity measure named "Common Neighborhood Sub-graph density" and combine the similarity with affinity propagation, which is a recently devised clustering algorithm.

소셜 네트워크를 비롯한 네트워크로부터 커뮤니티를 발견하려면 네트워크의 노드를 그룹 내에서는 서로 조밀하게 연결되고 그룹 간에는 연결의 밀도가 낮은 그룹들로 군집화하는 과정이 꼭 필요하다. 군집화 알고리즘의 성능을 위해서는 군집화의 기준이 되는 유사도 기준이 잘 정의되어야 한다. 이 논문에서는 네트워크 내의 커뮤니티 발견을 위해 유사도 기준을 정의하고, 정의한 유사도를 유사도 전파(affinity propagation) 알고리즘과 결합하여 만든 방법을 기존의 방법들과 비교한다.

Keywords

References

  1. S. Fortunatoa and C. Castellano, "Community structure in graphs," In Encyclopedia of Complexity and System Science. Springer Verlag, Heidelberg, Germany, 2009.
  2. Karl Branting, "Overcoming Resolution Limits in MDL Community Detection," In 2008 KDD workshop on Social Network Analysis, Las Vegas, Nevada, USA, 2008.
  3. Nicolas Neubauer and Klaus Obermayer, "Towards Community Detection in k-Partite k-Uniform Hypergraphs," In Workshop on Analyzing Networks and Learning with Graphs, NIPS 2009 December 11, 2009 in Whistler, BC, Canada.
  4. B. J. Frey and D. Dueck, "Clustering by passing messages between data points," Science, 315, February 2007.
  5. Y. Wang, H. Song, W. Wang, and M. An, "A microscopic view on community detection in complex networks," In Proceeding of the 2nd PhD Workshop on Information and Knowledge Management, Napa Valley, California, 2008.
  6. M. E. J. Newman and M. Girvan, "Finding and evaluating community structure in networks," Physical Review E, 69, 2004.
  7. M. E. J. Newman, "Modularity and community structure in networks," Proceedings of the National Academy of Sciences, USA, 103(23):8577–8582, 2006.
  8. L. A. Adamic and N. Glance, "The political blogosphere and the 2004 U.S. election: Divided they blog," In Proceedings of the 3rd International Workshop on Link Discovery, Chicago, Illinois, 2005.
  9. M. E. J. Newman, "Finding community structure in networks using the eigenvectors of matrices," Physical Review E, 74, 2006.