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Integrated Inventory Allocation and Customer Order Admission

Control in a Two-stage Supply Chain with Make-to-stock and
Make-to-order Facilities

Eungab Kim*

—m Abstract =

This paper considers a firm that operates make-to-stock and make-to-order facilities in successive stages. The
make-to-stock facility produces components which are consumed by the external market demand as well as the internal
make-to-order operation. The make-to-order facility processes customer orders with the option of acceptance or
rejection. In this paper, we address the problem of coordinating how to allocate the capacity of the make-to-stock
facility to internal and external demands and how to control incoming customer orders at the make-to-order facility
s0 as to maximize the firm's profit subject to the system costs. To deal with this issue, we formulate the problem
as a Markov decision process and characterize the structure of the optimal inventory allocation and customer order
control. In a numerical experiment, we compare the performance of the optimal policy to the heuristic with static in-
ventory allocation and admission control under different operating conditions of the system.

Keyword : Two-stage Supply Chain, Inventory Allocation, Admission Control, Coordination,
Inventory Control
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1. Introduction

In this paper, we consider a firm that operates
two production facilities in successive stages;
one is for make-to-stock (MTS) operation and
the other is for make-to-order (MTO) operation.
The MTS facility produces components which
are consumed by the external market demand as
well as the internal MTO operation. The MTO
facility processes customer orders with the op-
tion of acceptance or rejection. In this paper, we
address the problem of coordinating how to allo—
cate the component inventory of the MTS facility
to internal and external demands and how to
control incoming customer orders at the MTO
facility so as to maximize the firm's long-run
expected profit subject to the system costs.

This work is motivated by a manufacturer that
owns two production facilities ; one for semi—con-
ductor chips and the other for printed circuit
board (PCB) items. After produced, semi-con-
ductor chips are stored in inventory for the pro-
duction of PCB items which are requested by the
companies that produces electronic products.
Depending on inventory available, the manu-
facturer also sells semi-conductor chips to the
PCB manufacturers in the market.

Several issues at the operational level can
emerge from the model presented in this paper.
If component production times tend to be longer
than the delivery time requested by customer or-
ders, components typically have to be stored in
advance. In such an environment, the stocking
decision for component is no longer a simple mat-
ter. Moreover, since there exist external demands
on the component, the issue of inventory alloca—
tion (whether make-to-stock capacity should be
served for external demand or internal demand)

is raised. Incorporating an admission control into
a make-to-order system is also important due
to its applicability to real problems. The primary
goal of this paper is (i) to present the formulation
of an appropriate model for jointly managing in-
ventory allocation and admission control, (i) to
investigate the structure of the optimal policy,
and (iii) to implement the performance compar-
ison of the optimal policy and the heuristic with
static inventory allocation and admission control.

There is a vast literature on production control
and blocking mechanisms in multi-stage pro-
duction systems using queueing network model-
ing (see Dallery and Gershwin [3] for the liter—
ature survey). Veatch and Wein [13, 14] studied
the problem of production planning in a two-
stage production system where unmet demands
from finished goods inventory are backordered.
Assuming Poisson demand and exponential pro-
duction times, Veatch and Wein [13] charac-
terized the optimal production decisions as two
monotone switching curves. In [14], Veatch and
Wein found conditions that certain simple poli-
cies are optimal and showed that the base stock
policy can never be optimal. Optimal controls
were compared with kanban, base stock, and fi-
nite buffer control mechanisms.

The model presented in this paper is closely
related to the literature dealing with joint admis—
sion (inventory rationing) and production control.
Benjaafar and ElHafsi [1] considered a single
product, multi-components assemble-to-order
system with multiple demand classes where com-
ponents are produced in a make-to-stock fash-
ion. Under the assumption of instantaneous as-
sembly, they showed that a base-stock policy is
optimal for controlling production of each com-
ponent and a component inventory reservation
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policy with state-dependent rationing levels is
optimal for controlling admission of each demand
class. ElHafsi [5] extended Benjaafar and ElHafsi
[1] to the case that each demand class arrives
according to a compound Poisson process. For
a single product make-to-stock system with
multiple demand classes with lost sales, Ha [6]
showed that a base-stock policy is optimal for
controlling production and an inventory reser—
vation policy with fixed rationing levels is opti-
mal for controlling admission. Ha [7] and de
Vericourt et al. [4] extended these results to the
case backordering for two demand classes and
N demand classes, respectively. Teunter and Ha-
neveld [12] considered a single product make-to—
stock system with two demand classes (critical
and non-critical) and studied the rationing policy
that the number of items reserved for critical de-
mand depends on the remaining time until the
next order arrives. Carr and Duenyas {2] consid-
ered a assemble-to-order/make-to-stock sys-
tem that produces two classes of products and
studied the problem of joint admission control
and production switching.

All references cited above assumed that (1) the
order/demand arrival process follows a Poisson
process and the production/assembly times fol-
low the exponential distribution for the mathe-
matical tractability and (2) each production/as-
sembly generates one unit at a time because the
setup cost is not included into the models.
Despite these restrictions in real applications, the
Makov models presented in the literature are
known to be useful to gain the strategical in-
sights into the nature of the joint admission and
production control problem. In this paper, we
adopt the same modeling approach as the above

references but our model contributes to the cur-

rent literature in the following essential aspects.
First, we explicitly consider a two-stage pro-
duction system while the references consider a
single stage production system. Although ElHafsi
[5] and Benjaafar and ElHafsi [1] considered a
two-stage production system (i.e., assembly fa-
cility and component production facility), the as-
sembly process is assumed to be instantaneous.
Second, we deal with the issue of capacity ra-
tioning at the component production level while
the references deal with the issue of demand ra-
tioning (i.e., which type of demand to accept or
reject) based on the finished goods inventory.

The rest of the paper is organized as follows.
Section 2 presents model assumptions and prob-
lem formulation. In Section 3, we determined the
structure of the optimal policy. In Section 4, we
implement a numerical study. The last section
states conclusions.

2. Model Definition and
Problem Formulation

Customer orders arrive at the MTO facility
according to a Poisson process with rate A. The
firm can accept or reject each arriving customer
order and a penalty cost of ¢, is incurred when-
ever it is rejected. Each MTO operation requires
one unit of component and takes an exponentially
distributed amount of time with mean x4 '. If it
is completed, a revenue of R, is generated. The
MTS facility produces components one unit at
a time according to an exponential distribution
with mean 4 '. If the firm sells one unit of com-
ponent at the market, a revenue of R, is gene-
rated. A service delay cost is assessed at rate
h, for each outstanding customer order whereas
a holding cost is incurred at rate h, for each
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component in inventory.

The set of decision epochs in our model corre-
sponds to the epochs of customer order arrival,
MTO operation completion, and component pro-
duction. At each epoch of a component pro-
duction, the firm should determine whether to
stock or sell it. Furthermore, at each epoch of
customer order arrival, the firm must decide
whether to accept or to reject it. The goal of this
paper is to find an inventory allocation and ad-
mission control which maximizes the expected
discounted profit over an infinite horizon. [Figure
1] graphically illustrates a schematic model of
the problem described above.

The state of the system can be described by
the vector (n,, n,) Where n, is the number of cus-
tomer orders in queue and n, is the inventory
level of component that will be used in the MTO
operation. We denote the state space by I.

We can formulate the optimal control problem
as a Markov Decision Process. Let v(n;, n,) be
the optimal expected discounted profit over an
infinite horizon when the initial state is given by
(r,, n,). Let y=p, +2+p, and 8 be a continuous

interest rate. Then, the expected length of time

Random
production times

per state transition becomes v ' and the discount

factor during v ! is given by ~/(8++). The fol-

lowing state transitions are relevant to (n,, n,).

¢ Customer order arrival with a probability of
M~ ¢ If it is accepted, the size of outstanding
customer orders increases by one. Otherwise,
a cost of ¢ is incurred.

e Service completion on a customer order with
a probability of p /v : The size of outstanding
customer orders and the inventory level de-
crease by one, respectively.

¢ Component production epoch with a proba-
bility of /v : If it is decided to sell, a revenue
of R, is generated. Otherwise, the inventory
level increases by one.

Therefore, we can write the optimality equa-—
tion for v(n;, n,) as follows :
1

v(n,, n2)=ﬁ—+;[— (hyny +hyny) (1

+p, [(v(n,~1,n,— 1)+ R )1(n, >0,n, >0)
+u(n,, ny)1{nn, =0)]

+Amax[v(n, +1, n,),v(ny, ny)—c,]

+p, max[v(n,, n, +1), v(n;, n,) +R,]

where the indicator function 1(a)=1 if a is true,

with mean u - Random
Ctom‘?onent Arrival process
stocking with rale A
MTS ——p () rreseesd MTO ;—-——-— Customer
facility : tnventory facility .
: Random ."\ I
v
service times Rejection
Component with mean p -
selling

Customized
product

w==saed Controlled transition
———p {ncontroffed transition

[Figure 1] A two-stage supply chain with inventory allocation and admission control
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otherwise, zero. In (1), —(hyn, +hyn,) is the costs
of service delay and inventory holding, the term
multiplied by p, represents the transitions and
revenue generated by the MTO operation, the
term multiplied by A represents the transitions
and rejection cost generated by customer order
arrival and the term multiplied by g, represents
the transitions and revenue associated with in—
ventory allocation. <Table 1> summarizes the

key notations.

(Table 1) Summary of key notations in the model

Notation Description

w! Mean time of MTO operation

1 Mean time of component production

A Arrival rate of customer order
~ State transition rate, sum of g, A, g,
B

Continuous interest rate

Holding cost rate of an outstanding
customer order

Holding cost rate of a component in
inventory

R MTO Revenue
x,

Component sales revenue

c, Rejection penalty of customer order

n; Size of outstanding orders

n, Inventory level of component

System state

r State space

T Value iteration operator

Optimal expected discounted profit given

ol ) | iitial state (n, my)
A;(n,) |Optimal inventory allocation curve
A,(n;) |Optimal admission control curve

3. Structure of the Optimal
Policy

In this section, we characterize the structure

of the optimal inventory allocation and admission
control. We will follow Porteus ([9]). The key of
this approach is to identify a set of structured
value functions and to show that it is preserved
under the value iteration operator. Then the cor-
responding structures of the optimal profit func—
tion and the optimal policy can be established.
For any real valued function f on I, define D,f
(ny, ny) = fny +1, ny) = flny, my), Dyf(ny, my) = fmy,
n,+1)—f(n;, n,), and D, f(n;, ny) = fln, +1, n, +1)
—fln;, n,). D, represents the marginal value of
having one more outstanding customer order, D,
is the additional value of holding one more com-
ponent in inventory, and D,, is the value of hold-
ing one more outstanding customer order and
one more component in inventory. Operators D,,
D,, and D, are convenient to define the super-
modularity and concavity of f and substantially
shorten the analysis. Let V be the set of all func—
tions defined on I' such that if f&V, then

D,f(n), n,) < Dyf(n, +1, ny), 2
D,f(n), ny) = Dyf(n, +1, ny +1), 3)
D,f(ny, ny) = Dof(ny, my +1), 4)
D,f(n,, ny) = D,f(n, +1, ny, +1), o)
D f(ny ny) = Dif(n; +1, ny), 6)
D, f(ny n,) <R, (7

Equation (2) establishes the supermodularity
of f and it can be rewritten as

D, f(n, n,) < Dif(n,, n, +1). (8)

From (4) and (6), f is concave in », and n,.
Equation (7) implies that the benefit attained
from holding one more customer order in queue
and one more component in inventory cannot ex-
ceed R,
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To establish the structural properties of the
optimal policy, we first show that Equations (2)~
(7) are preserved under value iteration operator
T. The proof of this and all subsequent results
are included in the Appendix.

Lemma 1 : If feV, then TfEV.
We now state the main result of this section:

Theorem 1 : (@)veEV.
(b) Let
Alny) i= max{n, : D(n, ny) =2—¢.}, (9)
I(n,) := max{n,: Dy(n;, n,) = R }. (10

The optimal admission control is defined by
Alny) such that when a customer order arrives
in state (n,, n,), it is optimal to accept it if n, <
Al(n,), otherwise, to reject it. The optimal in—
ventory allocation is defined by I(n,} such that
if a component is produced in state (n;, n,), it
is optimal to stock it if n, < I(n,), otherwise, to
sell it at the market.

(c) A(n,) is increasing in n, and I(n,) is increas-

ing in n,.

Part (b) of Theorem 1 states that the structure
of the optimal inventory allocation and admission
control is characterized by two monotone swi-
tching curves A(n,) and I(n,). The reasoning be-
hind part (c¢) of Theorem 1 is derived from the
fact that the production system should keep a
balance between the queue length of customer
order and the component inventory to increase
its capacity utilization. And this implies that the
MTO facility will demand components depending
on the ratio of the accepted customer order rate
over the MTO service rate, p,.

%
n;
an

1 Reject customer order

15 ) & Sell component
4+ -

Accept customer -

T order & Sell -
T component
4 , /

10T e A(ny)
'[ /’¢ ---'I(n,)
1 7 an
1 /&:ccpt customer {awv)

L # order & Do not Reject customer order

57 sell component, & Do not selt

+ component
1 1 1 1 1 L 1 1 1 1 1 1 L L
T T T L T LI T T T T T T —rony
5 10 15

[Figure 2] Graphical representation of the optimal
switching curves

[Figure 2] graphically illustrates the structure
of the optimal policy for the example with B =50,
R =5,c,=10,h =2, h,=1,p, =1, A=0.5, p, =05,
and =0.0001. As seen in [Figure 2], A(n,) and
I(n,) separate the state space into the following
four regions : (7) Accept customer order and sell
component, (ZZ) Reject customer order and sell
component, (777) Accept customer order and do
not sell component, and (/V) Reject customer or-
der and do not sell component. For example, in
state (5, 5), the optimal inventory allocation is
to not sell component and the optimal admission
control is to accept an incoming customer order.
A(ny) and I(n,) in [Figure 2] are found using val-
ue iteration (VI) method (see section 6.3.2, Puter-
man [10]). VI is the most widely used algorithm
for solving discounted Markov decision problems.
The key of this algorithm is to iteratively solve
FH (2, z,) = T (), 2,), k=0, 1, -+, until | 7" —*|

is within some termination criterion where
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+oF (g, 1y)1(nyny =0)]
o*(ny, ny)—c,
v (nl, n,)+R].

+ X max [vf (n, +1,n,),

+p, max [of ("17 N, +1),

If VI stops at the I** iteration, A(n,) and I(n,)
are obtained by setting v(n, n,)= 7v'(n, n,) and
applying (9) and (10).

Next, we consider the case with the average
profit criterion. Define the value iteration oper-

ator 7T for the average profit MDP as

Tiln,, nz)z%[— (hym, +hyny) an

+u, [(w(n1 -1, n, —1)—1~1~20)1(n1 >0, n, >0)
+w(nl, n2)l(n1n2 =0)]
+ X max{w(n, +1, ny),win;, ny)—¢,]

+4e, max{w(n,, n, +1), win,, n,) +R,]

From applying the same arguments as Lemma
1 and Theorem 1, the structure of the optimal
policy exploited in the discounted profit MDP is
still preserved for the average profit MDP. We
also note that the policy of never rejecting cus-
tomer orders cannot be optimal, since z, can go
to the infinite, and thus the policy of never selling
components cannot be optimal because =z, is
finite. Since (11) has a finite state space and a
finite action space, and it is unichain, from Puter-
man ([10]), there exists an optimal average profit
g which satisfies

g+w(ng, ny) = Tw(vy, n,y). ‘ (12)

4. Numerical Study

In this section, we present numerical results
that compare the performance of the optimal pol-
icy and a policy which controls the decision of

admission control and inventory allocation with
static two single parameters A4 and A4, respec-
tively. The (a4 Az) policy accepts each arriving
customer order only when n, <4 and produces
a component for internal make-to—order oper-
ation only when n, <24. The (a4 14) policy is
certainly a simple policy to describe and imple-
ment in practice. In fact, fixed single parameter
controls have been presented and analyzed in
many inventory management papers ([8, 11, 14]).
For the easiness of the comparison, we compute
the optimal average profit rather than the optimal
discounted profit. The optimal average profit of
(a4 A1) policy given A4 and 24 is computed us-
ing value iteration and the optimal values of 4
and 34 are found using a two-dimensional se-
arch. More specifically, we first set the possible
ranges of A4 and Az values. Second, given some
specific values of A4 and A4, we iteratively solve
¥ ny, ny) = TWF(n, n, 1, k=0,1, -, untl |7F -/

is within some termination criterion for each (n,,

n,) where
i (ny, ny) = %[— (hyny +hyny) (13)
+p, [ (n; =1, ny = 1)+ &) 1(n, >0, ny, >0)

+u* (ny, ny)1(nyn, =0)]
Ak (n, +1, ny)1(n, <24)
+ (W (ny, ny) — ¢, )1{n, = A1)
+p, (¥ (ny, ny +1)1(n, < 24)
+(u*(n, ny) + R )1(n, = M)]

and «’(n;, ny) =0 for each (n,, n,). Then, set u(n,
n,) = Tu*(n, n,). For all the combinations of A1
and A4 values, we implement VI and find the best
of a4 and A4 which maximizes u(n,, n,). Note
that it is conjectured that u(n,, n,) is concave in
M, and A4 but it cannot be proven.
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<Table 2> compares the optimal average pro-
fits obtained by the optimal policy and (44 2%)
policy described for 36 examples. Since the struc-
ture of the optimal policy is quite complex, we
focused on the development of heuristic policy
that is certainly very simple to describe and im-
plement in practice if the appropriate values of
the parameters are found. For this reason, the
performance comparison is made in terms of the
profits obtained by the optimal and heuristic pol-
icies rather than the cpu times spent in finding
them. In this table, % is defined as the perform-
ance difference between the optimal policy and
(A1, M) policy to the optimal performance. Test
results in <Table 2> suggest that the perform-
ance of (A4 Az) policy can be sensitive to the ex~
ample groups. For example, the % difference be-
comes larger as A increases. The average per-
formance difference between the optimal policy
and (4 A1) policy is 6.5%.

[Figure 3] graphically compares the structure
of the optimal policy and (34 %) policy using
Example 13 in <Table 2>. Like the optimal poli-
cy, the (34 A1) policy defines four regions that
manage inventory allocation and admission con—
trol. The advantage of (34 1£) policy is that it
is much simpler, particularly when the size of
state space is large, to implement than the opti-
mal policy because it does not require the com-
putation of the state dependent A(n,) and ().
However, the (a4 3%) policy is clearly subop-
timal as illustrated in [Figure 3] and lacks the
coordination in managing inventory allocation
and admission control carried out under the opti-
mal policy.

<Table 2> reveals two interesting results.
First, the performance difference between the

optimal policy and (34 A4) policy can be larger

as A or h, increases. Second, it can be smaller

as p,, R, R, or h, increases. These results can

be intuitively explained as follows :

o When X becomes larger, it appears important
to effectively handle rejection of customer or-
ders due to the increased traffic intensity, which
makes the role of dynamic admission control
crucial in reducing excessive rejection costs
over the static admission control.

e When g, is low (components are produced
slowly), the system variability can be ampli-
fied, Hence, it is reasonable to think that a dy-
namic inventory allocation and admission con-
trol will be more cost effective, which is con-
sistent with other works in the inventory con—
trol literature which show that the dynamic
control becomes a more effective way over

static rules when lead time is longer.

If B, increases, the optimal policy will accept

more customer orders and stock more compo-

nents. Hence, it appears that the cost reduction
expected from a dynamic admission control
can be limited.

e When h, is high, the decision of accepting or
rejecting a particular customer order should be
done more carefully because holding customer
orders in queue becomes more expensive.
Hence, we can expect that the dynamic ad-
mission control will contribute to reducing the
excessive payment of service delay cost.

e As R or h, becomes larger, the action of sell

will be preferable to the action of produce-

to-stock, which leads less components to be
kept in inventory (thus less customer orders
to be accepted). Hence, it can be expected that
the role of dynamic inventory allocation and

admission control will be reduced.
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(Table 2) Performance comparison of the optimal and (2%, 3%) polices
. (M, ML)
Ex &, &, G hy hy A H, Hq g% 7 M Y %
1 100 5 15 2 1 045 1 02 | 147 | 140 1 20 48
2 05 134 | 127 1 20 56
3 065 121 | 113 1 20 | 70
4 075 106 | 98 1 20 88
5 085 92 | 83 1 20 | 114
6 0% 77 | 68 1 20 | 147
7 50 10 10 2 1 05 1 02 | 56 | 49 1 20 | 136 -
8 03 | 102 | 94 2 9 84
9 04 | 142 | 135 3 7 48
10 05 | 171 | 167 4 6 22
11 06 | 194 | 191 5 4 17
12 07 | 213 | 210 6 4 17
13 50 5 5 2 1 04 1 04 | 134 | 131 3 5 | 22
14 s 21 | 219 4 6 11
15 | 100 311 | 309 4 7 07
6 | 15 02 | 400 5 8 05
17 | 150 494 | 492 5 9 04
18 | 15 586 | 584 5 9 03
19 50 5 5 2 1 04 1 06 | 167 | 164 5 3 19
20 10 177 | 174 5 3 17
21 15 188 | 185 5 3 16
22 20 199 | 196 4 3 15
23 2% 210 | 207 4 3 14
24 30 21 | 219 3 2 11
25 50 10 5 1 1 06 1 025 | 94 | 89 1 7 49
2 2 90 | 83 1 8 84
27 3 87 | 78 1 8 125
28 4 84 | 72 1 8 17.3
29 5 81 66 1 8 234
30 6 78 | 60 1 9 307
31 100 5 5 2 1 065 1 03 | 307 | 28 2 20 78
32 2 293 | 285 2 10 73
3 3 282 | 213 2 7 73
A 4 210 | 26.2 2 6 7.1
3H 5 260 | 2562 2 5 6.3
36 6 262 | 245 3 5 30
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[Figure 31 Structural comparison of the optimal
policy and the (a4 A%) policy

5. Conclusions

In this paper, we address the problem of in-
tegrating inventory allocation and admission con-
trol for a production system with make-to-stock
and make-to—order facilities in successive sta—
ges. In particular, we dealt with the issue of in—
ventory allocation at the component production
level, which has not been treated in the related
literature. Using a Markov decision process fra-
mework, we characterized the structure of the
optimal inventory allocation and admission con-
trol by two monotone switching curves.

To provide a better understanding of the struc-
ture of the optimal policy, we compared the per-
formance of the optimal policy to the policy with
static inventory allocation and admission control
under different operating conditions of the sys—
tem. Through extensive numerical experiments,
we examined how much a dynamic inventory al-
location and admission control is effective and
under what conditions it is much more favorable
over static controls. Test results showed that the

static policy works poor when component pro-
duction time is longer, the inter-arrival time of
customer order is shorter, or service delay cost
of customer order is larger. This suggests that
developing more efficient and computationally
inexpensive heuristic policy is demanding.
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(Appendix)

Proof of Lemma 1 : Denote by (4/R/S/N) the optimal action in (n,, n,) Where 4, 8 S and N represent
accept, reject, sell, and do not sell actions, respectively. Define
T,f(n,, ny) = (v(n, =1, n, —1)+ R )1(n, >0, n, >0) +v(n,, n,)1(n;n, =0)
T f(ny, ny) =max{f(n, +1, n,), f(n,, n,)—¢,}
T,f(n;, ny) =max{f(nl, n,+1, f(n,, nz)—l—Rs}

Tf(n;, n,) =ﬁ[—(h1nl +hyny) +p, T f(ng, ny) + AT f (ng, 1) + 2, Ty f (ny, my )]

To prove Lemma 1, we show that (2)~(7) are preserved under 7;, 7;, and 7T,.
(i) Let Ai=DTif(n,, n,)— DT f(n, +1,n,).

o Al If myn, >0, A'<0 by (2). If n, =0 and n, >0, A'=D,f(0, n,) - D,f(0, n, —1) < 0 by (4). If n, >0
and n, =0, A'=D,f(n,, 0)—D,f(n;—1,0) <0 by (6). If n, =n, =0, A'=D,f{0, 0)—~ (R, +(0, 0)— (1, 0))
< D,f(0, 0)—(f(0, D= f(1, 0)(by (7)) <0 by (2).

e A% Focusing on the combinations of actions in (n;, n,+1), (n, n,), (n, +1, n,+1), and (n, +1, n,),
cases (R A,-,-) and (-,-,R A) are excluded by (2), (-, R -, 4) and (R, -, 4, -) by (6), and
(-,R 4, -) by (5). Cases (4, 4, 4, 4) and (B R R, R) follow from (2). For (4, 4, B R), A*=D,f(n,
+1, ny)—D,f(n, +1, n,) =0.

For (4, A, A, R) and (4, B R R), A* < D,f(n,+1, n,)— D,f(n, +1, n,) =0.

e A® : Consider the combinations of actions in (n;, n,+1), (n;, n,), (n,+1, n,+1), and (n, +1, n,). Cases
(v, 8,+,-) and (-, -, N, 8) are excluded by (4), (% +, S -) and (-, N -,8) by @), and (-, 8N -)
by (3). Cases (S, 5,8 8) and (M, N, N, N) follow from (2). For (S, &, 8, N), A%=DT,f(n, ny))— DTyf
(ny, ny)— DT3f(n, +1,n,) =0. For (8 8,8, 5 and (S, N, N, N), A® <D, T;f(n), ny) ~ DT,f(n, +1, ny) =0.
(ii) Let A'=D,Tf(n), )~ D, Tf (n, +1, ny +1),

o Al If nny >0, A'=0 by Q). If n, >0 and n, =0, A'=R +f(n, —1,0)~ f(n;, 0)— D,f(n;, 0) = R, — D, f
(n,—1,0) 20 by (7).

If n,=0, A'=D,f(0, n,)—D,f(0, ny) =0.

e A : Focusing on the combinations of actions in (n;, n,+1), (n;, n,), (n, +1,n,+2), and (n, +1, n, +1),
cases (R A4,+,-) and (-,+, R A) are excluded by (2), (B -,-,4) by (6), and (-, R -, A) and
(R -, A, +) by (6). Cases (4, 4, 4, A) and (R R, R R) follow from (3). For (4, 4, R R), A*=D,f(n, +1,
ny)— Dyf(n, +1, n,4+1) =0 by (4). For (4, B A, R), A?=D, f(n, ny) =Dy f(n; +1,n, +1) = D,f(n, +1, n,)
—Dyf(n, +2,n,+1) (by (5)) =0 (by (3)). For (4, 4, 4, R), A?>= D,f(n, +1, n,)— Dyf(n, +2, n, +1) =0
by (3).

For (4, R R R), A*= Dyf{n,, ny)~D,f(n, +1,n,+1) =0 by (3).

e A% : Consider the combinations of actions in (n,, n,+1), (n;, n,), (r, +1,n,+2), and (n, +1, n, +1).
Cases (¥, S, +,-) and (-, -, N S) are excluded by (4), and (S, -, N, -) and (-, S, -, M) by (3). Cases
(5,55 5) and (N, N, N, N) follow from (3). For (s, ¥ 8 M, a*=r —~R =0. For (N5 5) and



AR FEAL ADER o) Fold F WA FdelA An gt 3AFE +4 $AY F1A el 95

(N, N, S, N), A= fln,, ny+1)— R, —fln, ny +1)—If(n, +1, n, +2)— B, — f(n, +1, n, +2)] =0

(iii) D,7F(n;, ny+1) < Dy Tf(ny +1, ny, +1) (by (2)) < D, Tf(n;, n,) (by (3)).

(iv) Let A*= D Tf(n), ny) =D, Tf(n, +1, ny +1).

e A' 1 If o, >0, A'>0 follows by (5). If n, =0 and n, >0, A'=R —D,f(0,n,—1) =0 (by (7). If
n, =0, A'=D, f(n;, 0)— D f(n,, 0)=0.

® A?: Consider the combinations of actions in (n, +1, n,), (n,n,), (n,+2,n,+1), and (n, +1, n, +1).
Cases (4, R +,-) and (-, -, A4, R) are excluded by (6), (-, R -,4) and (R -, 4, -) by (5), and
(4, -, -, R by ). Cases (4, 4, 4, 4) and (R R R R) follow from ). For (& A4, R, A), A?=—c, +¢, =0.
For (4,4, R A) and (R A, R R), A*= f(n, +1,n,)—c, —f(n, +1, ) = [f(n, +2, ny +1) —¢, — fn; +2, n, +
1)]=0.

* A% : Considering the combinations of actions in (n, +1, n,), (n,, n,), (n, +2, n, +1), and (n, +1, n, +1),
cases (S, NV, +,-) and (-,-,S, N) are excluded by (2), (5, N +) and (-, 5 -, N) by (3), and
(S, -,«, M by (4. Cases (5 8 85 8 and (¥, N, N, N) follow from (5). For (W, ¥, S, 8), A*=D f(n, n, +
1)=D,f(n, +1,n,+1) =0 (by 6)). For (¥, S, N, S), A3=D,,f(n;, n,)—D,,f(n, +1, n, +1)) = D,f(n, +1, n,)
—Dyf(n;+2,n,+1)(by (B)) =0 by Q). For (¥, ¥, N, S) and (W, 8, S, S), A% = D, f(n, n,)— D1 f(n; +1, n,
+1)) = 0.

(V) D, Tf(n, ny+1) = D, Tf(n;, n,) (by (2))= D, 7f(n, +1, n, +1) (by (5)).

(vi) Let A'=D, Tif(n, ny). For &' if nn,=0, A'=R otherwise, A'=D,f(n, —1,n,—1) < R, from
(7). For A*, considering the combinations of actions in (n, +1, n,+1) and (n,, n,), cases (4, A)
and (& R) follows from (7), case (& A) follows from A?< D, f(n,, n,) <R, and case (4, R) is
excluded by (5). For A*, consider the combinations of actions in (n, +1, n, +1) and (n,, n,). Cases
(5, 5) and (& &) follow from (7), case (S, M) follows from A2 < D, f(n,, n,) <R, case (M, ) is

excluded by (3). Therefore, since A*< R,, D, Tf(n;, n,) = %ﬂ[_ (hymy +hyny )+, A+ XA+, A7)

<R,

Proof of Theorem 1 : (i) From (1) and the definition of T;, 7;, T;, and T, we have
1
To(n,, n,) = i [— (hyny +hyny) 12, Tv(ny, 1y) + ATyo(ny, ny) +p,Tyv(ng, ny)].

Since Lemma 1 holds for any real valued function on I, it follows that v€ V.

(ii) Suppose v(n, +2, n,) >v(n, +1, n,)—c,. From the concavity of v in n,, v(n, +1, n,) >v(n,, n,)—c,,
which implies that if the optimal policy accepts customer order in (n, +1, n,), then it does in (n,, n,).
Suppose v(n,, ny +1)+ R, <v(ny, n, +2). From the concavity of v in ny, v(n,, ny) + R, <v(n, n, +1). Hence,
if the optimal policy does not sell component in (n;, n, +1), then it does not in (n, n,).

(iii) Suppose v(n, +1, ny) >v(n,, n,) —c,. From the supermodularity of v, v(n, +1, n,+1) >v(n,, n,+1)—c,.
That is, if it is optimal to accept customer order in (n,, n,), then it is optimal to do in (n,, n, +1).
Suppose v(ny, n,)+ R, <v(n,, n,+1). From the supermodularity of v, v(n, +1, n,)+R, <uv(n, +1, n, +1).
Hence, if it is optimal not to sell component in (n,, n,), then it is not optimal to do in (n,+1,n,).



