DOI QR코드

DOI QR Code

Characterization of Cone-beam Computed Tomography System for Small Animal

콘빔형 소동물용 전산화단층촬영(CT) 장치의 성능평가

  • Kang, Hyeong-Geun (Department of Radiological Science, Catholic University of Daegu) ;
  • Chon, Kwon-Su (Department of Radiological Science, Catholic University of Daegu)
  • 강형근 (대구가톨릭대학교 방사선학과) ;
  • 천권수 (대구가톨릭대학교 방사선학과)
  • Received : 2009.11.18
  • Accepted : 2010.03.15
  • Published : 2010.03.31

Abstract

A cone-beam computed tomography (CT) system for a small animal has been widely used in the bio-medical application. This paper introduced simple methods for evaluating a cone-beam CT system using a simple tungsten wire phantom of 10{$\mu}m$ diameter and a water phantom. Slice images and three-dimensional tomography images were obtained through 360 projection views per one sample rotation under stable X-ray tube conditions for a long running time. The cone-beam CT system at a position of a 1.07 magnification showed a spatial frequency of 13.78 lp/mm ($36.2{\mu}m$ spatial resolution) and gave a CNR of 10.33 and a S/N of 5.87 under a tube voltage of 80kV.

콘빔형 소동물용 CT 장치는 바이오-의료분야의 기초 실험에 활발히 응용되고 있다. $10{\mu}m$의 직경을 가진 텅스텐 와이어(wire)와 물 팬텀을 이용하여 비교적 간단한 방법으로 소동물용 CT 장치를 평가할 수 있는 방법을 제시하였다. X선 튜브가 안정적으로 장시간 운전 가능한 조건에서 $1^{\circ}$ 간격으로 360개의 투영영상을 획득하고, 영상재구성을 통하여 슬라이스 영상 및 3차원 영상을 얻었다. 콘빔형 소동물용 CT 장치는 배율 1.07배 위치에서 13.78lp/mm(공간해상도 $36.2{\mu}m$)를 나타내었고, 80kV의 관전압에서 CNR 10.33 및 S/N 5.87을 보였다.

Keywords

References

  1. Hounsfield GN, Computerized transverse axial scanning (tomography): 1 Description of system, The British Journal of Radiology 1973; 46:1016-1022 https://doi.org/10.1259/0007-1285-46-552-1016
  2. Cromack AM, Reconstruction of densities form their projections with applications in radiological physics, Physics in Medicine and Biology 1973;18:195-207 https://doi.org/10.1088/0031-9155/18/2/003
  3. The Korean Society of Medical Imaging Technology, TEXTBOOK of Computed Tomography, Chung-Ku Publishing Co, 2009
  4. Nam KY, Kim KW, Kim JH, Son HH, Ryu JH, Kang SH, Chon KS, Park SH, Yoon KH, Micro-CT System for Small Animal Imaging, 의학물리 2008;19(2):102-112
  5. Kuntz J, Dinkel J, Zwick S, Bauerle T, Grasruck M, Kiessling F, Gupta R, Semmler W, Bartling SH, Fully automated intrinsic respiratory and cardiac gating for small animal CT, Physics in Medicine and Biology 2010;55(7):2069-2085 https://doi.org/10.1088/0031-9155/55/7/018
  6. Ritman EL, Micro-Computed Tomography - Current Status and Developments, Annual Review of Biomedical Engineering 2004;6:185-208 https://doi.org/10.1146/annurev.bioeng.6.040803.140130
  7. Kruger RP, London JR, The industrial use of filtered back projection and maximum entropy reconstruction algorithm, Materials Evaluation 1982;40:1285-1289
  8. Kwan ALC, Boone JM, Yang K, Huang SY Evaluation of the spatial resolution characteristics of a cone-beam breast CT scanner, Medical Physics 2007;34(1):275-281 https://doi.org/10.1118/1.2400830
  9. Samei E, Flynn MJ, Medical Physics 1998;25:102-113 https://doi.org/10.1118/1.598165
  10. Kim HJ, Lee SC, Cho MH, Lee SY, Cho G, Use of a Flat-Panel Detector for Microtomography: A Feasibility Study for Small-Animal Imaging, IEEE TRANSACTIONS ON NUCLEAR SCIENCE 2005;52(1):193-198 https://doi.org/10.1109/TNS.2004.843107
  11. Feldkamp LA, Davis LC, Kress JW, Practical cone-beam algorithm, Journal of Optical Society of America A 1984:1(6):612-619 https://doi.org/10.1364/JOSAA.1.000612
  12. Bushberg JT, Seibert JA, Leidholdt Jr. EM and Boone JM, The essential physics of medical imagings, Lippincott Williams & Wilkins, 2001
  13. Flynn JC, Hames SM, Reimann DA, Wilderman SJ, Microfocus X-ray sources for 3D microtomography, Nuclear Instruments and Methods in Physics Research Section A 1994;353:312-315 https://doi.org/10.1016/0168-9002(94)91664-0
  14. Seibert JA, Boone JM, Lindfors KK, Flat-field correction technique for digital detectors, Proc. SPIE 1998;3336:348-354