The Effects of Diagnostic Radiology Image on Radiopharmaceutical Testing

방사성의약품 검사 시 진단(CT)영상에 미치는 영향

  • Lee, Eun-Hye (Department of Radiological Science, Far East University) ;
  • Lee, Ye-Seul (Department of Radiological Science, Far East University) ;
  • Kim, Gha-Jung (Department of Radiological Science, Far East University) ;
  • Choi, Jun-Gu (Department of Radiological Science, Far East University)
  • Received : 2010.08.24
  • Accepted : 2010.10.20
  • Published : 2010.11.30

Abstract

This research attempts to qualitatively evaluate the intensity change by radiopharmaceuticals and obtain computed tomography using phantom injected with various nuclide. Cylindrical phantom is used for comparing and analysing the effect on diagnosis image during radiopharmaceuticals inspection. Inside of the phantom, water is injected and computed tomography image is scanned. During nuclear medicine invitro, frequently used radiopharmaceuticals, $^{99m}TcO_4$ 20 mCi and $^{18}F$ 14 mCi, is diluted in the water phantom and scanned in the same method. Traverse image obtained by CT scan is divided into six traverse image in the same slice of each scanned image. CT-number(HU) value of 10 measuring point is measured in 2 cm interval based on the center of the phantom. Measured HU value, based on the water phantom, is compared with the image after injecting $^{99m}TcO_4$ and $^{18}F$. Average scale of water is 2.8~1.6 HU, $^{99m}TcO_4$ is 3.0~1.6 HU and $^{18}F$ is 1.2~0 HU. Average of water is $2.3{\pm}0.17$ HU, $^{99m}TcO_4$ is $2.2{\pm}0.85$ HU and F-18 is $0.7{\pm}0.95$ HU. Based on water, reduced value of about 0.1 HU and about 0.5 HU is acquired from $^{99m}TcO_4$ and F-18. Radionuclide used in nuclear medicine inspection utilizes 100~200 KeV energy and obtains image through scintillation camera and PET-CT utilizes 511 KeV positron annihilation energy to obtain image. What we learned from this research is that gamma rays from these energies used in CT scan for diagnosis purpose or radioactive therapy plan can change the intensity of the image. The nuclear medicine inspection for reducing the effect of emitted gamma ray diagnosis image should be obtained after a period of time considering half-life which would be reduced distortion or changed in image.

Keywords