THE COMPUTATION OF UNSTEADY FLOWS AROUND THREE DIMENSIONAL WINGS ON DYNAMICALLY DEFORMING MESH

변형격자계를 이용한 3차원 날개 주변의 비정상 유동 해석

  • 유일용 (인하대학교 대학원 항공우주공학과) ;
  • 이병권 (인하대학교 대학원 항공우주공학과) ;
  • 이승수 (인하대학교 항공우주공학과)
  • Received : 2009.12.21
  • Accepted : 2010.03.19
  • Published : 2010.03.31

Abstract

Deforming mesh should be used when bodies are deforming or moving relative to each other due to the presence of aerodynamic forces and moments. Also, the flow solver for such a flow problem should satisfy the geometric conservation law to ensure the accuracy of the solutions. In this paper, a RANS(Reynolds Averaged Navier-Stokes) solver including automatic mesh capability using TFI(Transfinite Interpolation) method and GCL is developed and applied to flows induced by oscillating wings with given frequencies. The computations are performed both on deforming meshes and on rigid meshes. The computational results are compared with experimental data, which shows a good agreement.

Keywords

References

  1. 1985, Soni, B.K., "Two- and - three dimensional grid generation for internal flow applications of computational fluid dynamics," AIAA paper, No.85-1526, pp.351-359.
  2. 1973, Gordon, W.N. and Hall, C.A., "Construction of curvilinear coordinate systems and application to mesh generation," International J. Num. Methods in Eng., Vol.7, pp.461-477. https://doi.org/10.1002/nme.1620070405
  3. 1974, Thompson, J.F. et al., "Automatic Numerical Generation of Body-Fitted Curvilinear Coordinate System for Field Containing Any Number of Arbitrary Two-Dimensional Bodies," J. Computational Physics, Vol.15, pp.299-319. https://doi.org/10.1016/0021-9991(74)90114-4
  4. 1977, Starius, G., "Constructing Orthogonal Curvilinear Meshes by Solving Initial Value Problems," Numerische Mathematik, Vol.28, pp.25-48. https://doi.org/10.1007/BF01403855
  5. 1980, Stegar, J.L. and Chaussee, D.S., "Generation of Body-Fitted Coordinates Using Hyperbolic Partial Differential Equations," SIAM J. Sci. Stat. Comp., Vol.1, pp.431-437. https://doi.org/10.1137/0901031
  6. 2007, Hoang, A.D. et al., "Development of a threedimensional multi-block structured grid deformation code for complex configurations," 한국전산유체공학회지, 12권 4호, pp.28-37.
  7. 2008, 정성기 외 5인, "항공기 공력특성 예측을 위한 Navier-Stokes 방정식 기반의 정적 유체-구조 연계 해석 시스템", 한국항공우주학회지, 36권, 6호, pp.532-540.
  8. 2009, 이희동 외 2인, "비정렬 혼합 격자계에서 신속 격자 변형 기법을 이용한 비정상 점성 유동 해석", 한국전산유체공학회지, 14권 3호, pp.33-48.
  9. 1981, Roe, R.L., "Approximate Riemann Solvers, Parameter Vectors and Difference Schemes," Journal of Computational Physics, Vol.43, Issue 2, pp.357-372. https://doi.org/10.1016/0021-9991(81)90128-5
  10. 1987, Merkle, C.L. and Athavale, M. "Time-Accurate Unsteady Incompressible Flow Algorithms Based on Artificial Compressibility," AIAA paper, pp.87-1137.
  11. 1978, Thomas, P.D. and Lombard, C.K., "The geometric conservation law-A link between finite difference and finite volume methods of flow computation on moving grids," AIAA Paper, No.78-1208.
  12. 1982, Mccroskey, W.J. et al, "An experimental study of dynamic stall on advanced airfoil sections. Volume 1: summary of the experiment," NASA-TM-84245-VOL-1.
  13. 1978, Part.1. General Description, 1979, Part.2. The Clan Wing, "Transonic Wind Tunnel Tests on an Oscillating Wing with External Stores," National Aerospace Laboratory, AFFDL-TR-78-194.
  14. 2000, Thomas, L., "Oscillating $65^\circ$ delta wing, experimental," NATO research & technology organisation, RTO-TR-026, pp.415-430.
  15. 2000, Willy, F., "Oscillating $65^\circ$ delta wing, numerical," NATO research & technology organisation, RTO-TR-026, pp.431-435.