DOI QR코드

DOI QR Code

Long Double-stranded RNA Induces Sequence-specific RNA Interference and Type I Interferon Responses in Rock Bream (Oplegnathus fasciatus)

  • Zenke, Kosuke (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kim, Ki-Hong (Department of Aquatic Life Medicine, Pukyong National University)
  • Received : 2009.12.14
  • Accepted : 2010.03.15
  • Published : 2010.03.31

Abstract

To determine whether long double-stranded RNA (dsRNA) induces RNA interference and type I interferon (IFN) responses in fish, long dsRNAs encoding enhanced green fluorescent protein (EGFP), GFPuv, and polyinosinic-polycytidylic acid sequences were co-injected with an EGFP expressing plasmid, into rock bream (Oplegnathus fasciatus). We investigated the EGFP mRNA and protein levels, and the transcriptional responses of dsRNA-dependent protein kinase and Mx1 genes. Long dsRNAs were strong inducers of a type I IFN response in rock bream, resulting in nonspecific suppression of exogenous gene expression. Furthermore, sequence-specific knockdown of exogenous gene expression at the mRNA level was detected at an early phase (24 h). These results suggested that long dsRNA may inhibit exogenous gene expression through an early mRNA interference response and a later type I IFN response in fish.

Keywords

References

  1. Alexopoulou L, Holt AC, Medzhitov R and Flavell RA. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732-738. https://doi.org/10.1038/35099560
  2. Dykxhoorn DM, Novina CD and Sharp PA. 2003. Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4, 457-467. https://doi.org/10.1038/nrm1129
  3. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K and Tuschl T. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494-498. https://doi.org/10.1038/35078107
  4. Fernandez-Trujillo A, Ferro P, Garcia-Rosado E, Infante C, Alonso MC, Bejar J, Borrego JJ and Manchado M. 2008. Poly I:C induces Mx transcription and promotes an antiviral state against sole aquabirnavirus in the flatfish Senegalese sole (Solea senegalensis Kaup). Fish Shellfish Immunol 24, 279-285. https://doi.org/10.1016/j.fsi.2007.11.008
  5. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE and Mello CC. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811. https://doi.org/10.1038/35888
  6. Hannon GJ. 2002. RNA interference. Nature, 418, 244-251. https://doi.org/10.1038/418244a
  7. Hershey JW. 1991. Translational control in mammalian cells. Annu Rev Biochem 60, 717-755. https://doi.org/10.1146/annurev.bi.60.070191.003441
  8. Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO, Goode J, Lin P, Mann N, Mudd S, Crozat K, Sovath S, Han J and Beutler B. 2003. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743-748. https://doi.org/10.1038/nature01889
  9. Jensen I and Robertsen B. 2002. Effect of double-stranded RNA and interferon on the antiviral activity of Atlantic salmon cells against infectious salmon anemia virus and infectious pancreatic necrosis virus. Fish Shellfish Immunol 13, 221-241. https://doi.org/10.1006/fsim.2001.0397
  10. Jensen I, Albuquerque A, Sommer AI and Robertsen B. 2002a. Effect of poly I:C on the expression of Mx proteins and resistance against infection by infectious salmon anaemia virus in Atlantic salmon. Fish Shellfish Immunol 13, 311-326. https://doi.org/10.1006/fsim.2001.0406
  11. Jensen I, Larsen R and Robertsen B. 2002b. An antiviral state induced in Chinook salmon embryo cells (CHSE-214) by transfection with the double-stranded RNA poly I:C. Fish Shellfish Immunol 13, 367-378. https://doi.org/10.1006/fsim.2002.0412
  12. Kariko K, Bhuyan P, Capodici J and Weissman D. 2004. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through Toll-like receptor 3. J Immunol 172, 6545-6549. https://doi.org/10.4049/jimmunol.172.11.6545
  13. Kunath T, Gish G, Lickert H, Jones N, Pawson T and Rossant J. 2003. Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype. Nat Biotechnol 21, 559-561. https://doi.org/10.1038/nbt813
  14. Matsuo A, Oshiumi H, Tsujita T, Mitani H, Kasai H, Yoshimizu M, Matsumoto M and Seya T. 2008. Teleost TLR22 recognizes RNA duplex to induce IFN and protect cells from bimaviruses. J Immunol 181, 3474-3485. https://doi.org/10.4049/jimmunol.181.5.3474
  15. Meurs E, Chong K, Galabru J, Thomas NS, Kerr IM, Williams BR and Hovanessian AG. 1990. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62, 379-390. https://doi.org/10.1016/0092-8674(90)90374-N
  16. Meylan E, Bums K, Hofmann K, Blancheteau V, Martinon F, Kelliher M and Tschopp J. 2004. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 5, 503-507. https://doi.org/10.1038/ni1061
  17. Plant KP, Harbottle H and Thune RL. 2005. Poly I:C induces an antiviral state against Ictalurid Herpesvirus 1 and Mx1 transcription in the channel catfish (Ictalurus punctatus). Dev Comp Immunol 296, 27-35.
  18. Reynolds A, Anderson EM, Vermeulen A, Fedorov Y, Robinson K, Leake D, Karpilow J, Marshall WS and Khvorova A. 2006. Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA 12, 988-993. https://doi.org/10.1261/rna.2340906
  19. Rothenburg S, Deigendesch N, Dey M, Dever TE and Tazi L. 2008. Double-stranded RNA-activated protein kinase PKR of fishes and amphibians: varying the number of double-stranded RNA binding domains and lineage-specific duplications. BMC Biol 6, 12(1-19). https://doi.org/10.1186/1741-7007-6-1
  20. Saint-Jean SR and Perez-Prieto SI. 2006. Interferon mediated antiviral activity against salmonid fish viruses in BF-2 and other cell lines. Vet Immunol Immunopathol 110, 1-10. https://doi.org/10.1016/j.vetimm.2005.08.023
  21. Schulz O, Diebold SS, Chen M, Naslund TI, Nolte MA, Alexopoulou L, Azuma YT, Flavell RA, Liljestrom P and Reis e Sousa C. 2005. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433, 887-892. https://doi.org/10.1038/nature03326
  22. Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R and Hiscott J. 2003. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148-1151. https://doi.org/10.1126/science.1081315
  23. Sledz CA, Holko M, de Veer MJ, Silverman RH and Williams BR. 2003. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5, 834-839. https://doi.org/10.1038/ncb1038
  24. Stein P, Zeng F, Pan H and Schultz RM. 2005. Absence of non-specific effects of RNA interference triggered by long double-stranded RNA in mouse oocytes. Dev Biol 286, 464-471. https://doi.org/10.1016/j.ydbio.2005.08.015
  25. Sudhakar A, Ramachandran A, Ghosh S, Hasnain SE, Kaufman RJ and Ramaiah KY. 2000. Phosphorylation of serine 51 in initiation factor 2 alpha (eIF2 alpha) promotes complex formation between eIF2 alpha (P) and eIF2B and causes inhibition in the guanine nucleotide exchange activity of eIF2B. Biochemistry 39, 12929-12938. https://doi.org/10.1021/bi0008682
  26. Svoboda P. 2007. Off-targeting and other non-specific effects of RNAi experiments in mammalian cells. Curr Opin Mol Ther 9, 9248-9257.
  27. Timmons L and Fire A. 1998. Specific interference by ingested dsRNA. Nature 395, 854. https://doi.org/10.1038/27579
  28. Tuschl T. 2002. Expanding small RNA interference. Nat Biotechnol 20, 446-448. https://doi.org/10.1038/nbt0502-446
  29. de Veer MJ, Holko M, Frevel M, Walker E, Der S, Paranjape JM, et al. 2001. Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol 69, 912-920.
  30. Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E and Flavell RA. 2004. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10, 1366-1373. https://doi.org/10.1038/nm1140
  31. Wianny F and Zernicka-Goetz M. 2000. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol 2, 70-75. https://doi.org/10.1038/35000016
  32. Williams BRG. 1999. PKR; a sentinal kinase for cellular stress. Oncogene 18, 6112-6120. https://doi.org/10.1038/sj.onc.1203127
  33. Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K and Akira S. 2002. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 169, 6668-6672. https://doi.org/10.4049/jimmunol.169.12.6668
  34. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K and Akira S. 2003. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640-643. https://doi.org/10.1126/science.1087262
  35. Yang S, Tutton S, Pierce E and Yoon K. 2001. Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Mol Cell Biol 21, 7807-7816. https://doi.org/10.1128/MCB.21.22.7807-7816.2001
  36. Zenke K and Kim KH. 2009. Molecular cloning and expression analysis of three Mx isoforms of rock bream, Oplegnathus fasciatus. Fish Shellfish Immunol 26, 599-605. https://doi.org/10.1016/j.fsi.2008.09.012
  37. Zenke K, Nam YK and Kim KH. 2010. Molecular cloning and expression analysis of double-stranded RNA-dependent protein kinase (PKR) in rock bream (Oplegnathus fasciatus). Vet Immunol Immunopathol 133, 290-295. https://doi.org/10.1016/j.vetimm.2009.08.009
  38. Zhu R, Zhang YB, Zhang QY and Gui JF. 2008. Functional domains and the antiviral effect of the double-stranded RNA-dependent protein kinase PKR from Paralichthys olivaceus. J Virol 82, 6889-6901. https://doi.org/10.1128/JVI.02385-07