Journal of the Society of Korea Industrial and Systems Engineering
Vol. 33, No. 1, pp.41 —50, March 2010.

AEIA

2E200M 83A%S 1 +AT
BAZA &g 718

I =4

AR5 A4 - o5 E
sgodistn Ak Eeh
w7 T2Zeo] 3 MESH

Search Heuristics for Capacitated Refuse Collection Network
Design in Reverse Logistics

Ji-Su Kim* - Hyun-Seon Choi** * Dong-Ho Leet'
*Department of Industrial Engineering, Hanyang University

**Panel Manufacturing Execution System Team, LG Display

2 wroMe il b AFoly Azt o o AgstA &+ 317!%% Al AR SEAY )7 sk
o Jd¥Y €58 AT T 2N agadAM g $AY A EAE UFL S’,l‘/} FAY AA TAe FAA
A A% oA AZIES FA Add dehe A A BAR A4 5 don sAXHE 4RE
Folu H7IFol AAF AF 2AH AAGL FolH AAAA AXNE TN 230}7%1 2ok o71A, 74 AR
e &FA%Fo] glol $7 Ao @REE HrEY Yol Aol otk £ =EAA thE FAY AAEA
Ne FAAAE AAsted dad aAgvE 279 Tﬂﬂ@ﬁ of #5ulge F& Hase AE FHo
E g =3 dgEAE voh B3 d9s] st ALANE o4 Fed BEE Adsien A
BEHE st Bt A9 AlBHoE = ojdd F 71X “ﬁﬂH FAZIEE Attt ol FA7I el thatko]
A} 500749 FAH fAAE M= EAC gt 2 TP AFEIHE A

Keywords : Reverse Logistics, Refuse Collection, Network Design, Search Heuristics

1. Introduction

There may be various recovery options when a product is
at the end of its original useful life. According to Thierry et
al. [27], they can be classified as repair, refurbishing, re-
manufacturing, cannibalization, and recycling. Another option
landfill and
incineration. For any manufacturing firms or municipalities, the

to deal with used products is disposal, i.c.,
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cost of disposal becomes an important variable. For example,
Steinhilper [26] reported that disposal cests are 2%, 3%, 12.5%
of direct production costs of laser printers, cars, and re-
frigerators, respectively. It becomes more so if firms are forced
to implement the product take back scheme. As a result, manu-
facturers worldwide are increasingly facing the responsibility
for their products at the end of life and must provide the methods

for collection, product recovery, and even disposal [14].

A - 20008 08 26

This work was supported by the Korea Science and Engineering Foundation(KOSEF) granted funded by Korea govemment(MEST) (Grant Code : 2009-0074736).



o
S
N

42

Under such circumstance, collection and product recovery ac-
tivities give rise to an additional material flow from customers
back to collectors, re-processors or producers, cailed the reverse
logistics in the literature. In general, reverse logistics, which
includes collection, recycling, remanufacturing, and reuse, can
be defined as the logistics activities all the way from used prod-
ucts no longer required by the user to products again usable
or disposable. Here, collection implies an activity that gathers
used or end of life products for further treatment. Also, recycling
implies material recovery without conserving any product struc-
tures, e.g., metal recycling and plastic recycling, while re-
manufacturing is the transformation of used or end of life
products into units that satisfy exactly the same quality or other
standards of new products. See Fleischmann et al. [6, 7],
Dowlatshahi [4], Guide et al. [9], Ferguson and Browne [5],
Lee et al. [18] for literature reviews on various aspects of reverse
logistics.

This paper focuses on the refuse collection, an activity gather-
ing used or end of life products or wastes and moving them
to some points where further treatment is required. Note that
refuse collection is one of important activities in reverse logistics
since product recovery or even disposal cannot be carried out
without collecting used products or wastes. Therefore, construct-
ing an efficient refuse collection system is one of fundamental
decision issues in reverse logistics for manufacturing firms or
municipalities. Among various decisions in refuse collection, we
address the problem of locating collection points as well as allo-
cating refuses at demand points to collection points, to be calied
the collection network design problem in this paper. Here, the
collection point can be defined as the place where recyclables
or wastes near the point are gathered and moved to some points
where further treatment is required. As in designing distribution
networks for forward logistics, the collection network design
problem considered in this paper is one of core decision prob-
lems in refuse collection systems.

Most previous research on designing reverse logistics or re-
fuse collection networks are case studies on recycling of wastes,
steel by-products, sand, carpets, automobiles, etc. Caruso et al.
[2] considered a multi objective capacitated location alloca-
tion problem for waste service users, processing plants, and land-
fills in an Italian urban solid waste region, and suggest heuristic
algorithms after formulating it as an integer programming model,
and Kroon and Vrijens [11] suggested another integer linear
programming model for a network design problem for returnable
containers, and solve it using an existing optimal algorithm for
the uncapacitated facility location model. Spengler et al. [25]
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considered a capacitated logistics network design problem for
by-product recycling of steel in Germany, and suggested a mixed
integer programming model, and Barros et al. [1] suggested heu-
ristic algorithms for a capacitated location problem for sand re-
cycling in Netherlands. Louwers et al. [20] performed case stud-
ies on designing carpet recycling networks in Europe and USA
after suggesting an optimal algorithm for a nonlinear mathemat-
ical model. Also, Krikke et al. [12] developed an uncapacitated
multi-echelon location model for designing reverse logistics net-
works, and suggested a mixed integer programming model and
solved it using a commercial software package. They performed
a case study on collecting, processing, and delivering end of
life automobiles. See Realff et al. [23], Krikke et al. [13], and
Lee and Dong [19] for other case studies on designing reverse
logistics networks.

Unlike the above case studies, several articles deal with the
theoretical aspects of the reverse logistics or collection network
design problem. Jayaraman et al. [10] considered the problem
of determining the numbers and locations of collection points
and refurbishing facilities for designing reverse logistics net-
works of hazardous products, and suggested heuristic algorithms
after formulating it using the two level hierarchical location
model. Min et al. {22] suggested genetic algorithms for the prob-
lem of determining the numbers, locations, and sizes of collec-
tion points as well as centralized return centers after suggesting
a mixed integer nonlinear programming model that maximizes
the potential cost saving. Fleischmann et al. {8] considered the
problem of designing forward distribution and reverse recovery
networks at the same time, and suggested a mixed integef linear
programming model that extends the traditional warehouse loca- -
tion problem. Recently, Salema et al. [24] generalized the model
of Fleischmann et al. [8] by considering multiple product types
with limited capacity and uncertainty in demand and return
flows, and suggested a branch and bound algorithm that mini-
mizes the sum of relevant costs. Also, Ko and Evans [17] sug-
gested a genetic algorithm  based heuristic for designing an in-
tegrated forward and return network, and Kim and Lee [16]
focused on a collection network design problem and suggested
several simple heuristics.

This paper considers the collection network design problem
that determines the locations of collection points as well as the
allocations of refuses at demand points to collection points.
Here, the collection points are determined by selecting them
from a given set of potential sites. Unlike the previous research
on designing the whole reverse logistics networks, we narrow
our scope to the refuse collection activity in order to provide
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the basic model for designing collection networks. The objective
is to minimize the sum of the fixed costs to open collection
points and the fransportation costs to move refuses at demand
points to collection peints. The main constraint is the capacity
restriction, i.e., an upper limit on the amount of refuse allocated
to a collection peint.

To describe the problem more clearly, we first present an
integer programming model. Then, due to the complexity of
the problem, two types of search heuristics, tabu search and
simulated annealing, are suggested together with three neighbor-
hood generation methods. In fact, this paper is an extension
of Kim and Lee [16] (that suggest simple heuristics) in that
search heuristics are suggested to find better solutions. In other
words, the initial solutions for the search heuristics are obtained
using the best one among those suggested by Kim and Lee [16],
and their performances are shown with the amount of improve-
ment from the initial solutions. Computational experiments were
done on test problems up to 500 potential sites, and the results
are reported.

The rest of this paper is organized as follows. The following
section describes the problem with a mathematical formulation.
Section 3 presents the search heuristics with the methods to
generate neighborhood solutions, and test results are reported
in Section 4, Finally, Section 5 concludes the paper with a sum-
mary and future research.

2. Problem Description

Before describing the problem, we first explain the refuse
collection system. <Figure 1>, obtained from Kim et al. [15],

shows a refuse collection area of a district of Seoul, Korea.
' (The district office operates its refuse collection system in such
a way that its entire district region is decomposed into several
areas.) As can be seen in the figure, the area consists of collec-
tion points and demand points. Recall that the collection point
is the place where the refuses at demand points are gathered.

As stated carlier, the problem considered here has two deci-
sion variables : (a) locating collection points; and (b} allocating
refuses at demand points to collection points. Here, the location
decision is done by selecting them from a given set of potential
sites. It is assumed that the amount of refuse at each demand
point is deterministic and given in advance. The objective is
to minimize the sum of fixed and transportation costs. The fixed
costs are related with opening collection points, and the trans-
portation costs, proportional to the distances as well as the refuse

<Figure 1> Refuse colliection system : an example

amounts, occur when refuses are moved from demand points
to collection points. It is assumed that the cost parameters are
deterministic and given in advance.

The main constraint is the capacity restriction at each collec-
tion point. In other words, the amount of refuse at each demand
point consumes a portion of the available capacity of the corre-
sponding collection point, and there is an upper limit concerning
the amount of refuse that can be allocated to the collection point,
1t is assumed that the available capacity at each collection point
is given in advance. Other assumptions are : (a) each demand
point is allocated to exactly one collection point, i.e., no demand
splitting is allowed; (b) it is not possible to assign more than
two collection points to a potential site; (c) distances between
potential sites are given and symmetric; and (d) each potential
site has the same fixed cost for opening a collection point.

® Parameters
Wi amount of refuse to be collected at potential site i,
i=1,2 " n
dy distance between potential sites i and j
i transportation cost {per refuse unit and unit distance)

from potential site / to j (Potential site j is the point
where a collection point is opened.)

fi fixed cost for opening a collection point at potential
site j

o capacity at the collection point opened at potential
site f

® Decision variables
¥ = 1 if potential site j is selected as a collection point,
and 0 otherwise
Xy = | if the refuse demand at potential site i is allocated
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to collection point opened at potential site j, and 0
otherwise

Now, the integer programming model is given below.

¢ [P] Minimize

j:zzlfj . y}.+§j§nlwi . dij TR (M
subject to

zn:l%:l fori=1,2,n 2
iz

T, <y, fori,j=1,2,,n 3
g“’i sz < Q) forj =1, 2,>, n 4
z;; €1{0,1} fori,j=1,2,,n &)
y; €{0,1} for j =1, 2, n (6)

The objective function denotes minimizing the sum of fixed
and transportation costs. Note that the transportation costs are
calculated using refuse amounts as well as distances between
collection and demand points. Constraint (2) ensures that each
demand point be assigned to one collection point, and constraint
(3) implies that demand point i can be assigned to collection
point j only if there is a collection point opened at potential
site j. In other words, no demand point can be assigned to a
potential site without a collection point opened there. Constraint
(4) denotes the capacity restriction at each collection point, i.e.,
the upper limit on the amount of refuse that can be assigned
to the collection point. Finally, constraints (5) and (6) specify
the conditions of decision variables.

Compared with the existing facility location models, the ca-
pacitated collection network design problem considered here has
the characteristics of both the p-median and the hub location
problems, but not exactly the same (Kim and Lee {16]). In other
words, the problem [P] has the characteristic of the p-median
problem in that collection points are selected among potential
sites. Also, it is similar to the hub location problem since the
refuses at demand points are allocated to collection points with
fixed costs and capacity restrictions. However, the p-median
problem does not consider fixed costs to open the locations,
weights in the transportation costs, and capacity restrictions.
Also, in the hub location problem, the transportation costs con-
sist of those from the origin to hubs, between hubs, and from
hubs to the destination. In fact, the hubs, which connect the
origin and the destination, have only the switching or sorting
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function. However, the collection network design problem con-
sidered in this paper is similar to the capacitated facility location
problem. Nevertheless, this paper has a certain contribution in
that we defined a basic collection network design problem for
reverse logistics, which can be extendable to more generalized
problems.

The problem considered in this paper is NP-hard, which can
be easily seen from the fact that the problem has the knapsack
constraints. As reported in Kim and Lee [16], it takes too much
time to solve the formulation [P] directly using a commercial
software package. Due to the complexity of the problem, there-
fore, we suggest search heuristics that give good quality sol-
utions in a reasonable amount of computation time.

3. Search Heuristics

This section presents the search heuristics, tabu search and
simulated annealing algorithms. Before presenting the algo-
rithms, we first explain the method to obtain an initial solution.

3.1 Obtaining an initial solution

The initial solution is obtained by the PFL-G (Preprocessing
Fixed Location Generalized Assignment) algorithm suggested by
Kim and Lee [16] since it gave the best result among six heu-
ristic algorithms. More specifically, the PFL-G algorithm gave
2% gaps from the optimal solution values for small sized test
instances.

Before presenting the detailed algorithm, the method to de-
termine the number of collection points to be opened is ex-
plained first. The basic idea is to cluster the potential sites c-
cording to a non-decreasing order of transportation cost between '
two potential sites. The procedure is given below.

o Procedure 1 : (Fixing the number of collection points)

Step 1: For all pairs of potential sites i and j, compute the
transportation cost hy as follows.

hjj=w; - dij * Gy
Then, sort all the pairs in the non-decreasing order
of transportation cost, and make a list according to
this order.

Step 2 : Starting from the top of the list obtained in Step 1,
do the following steps. (Repeat this step until all po-
tential sites are clustered.)

(2) Given a transportation cost hy, determine whether
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two potential sites i and j can be merged without
violating the collection point capacity.
{(b) If such points exist, merge them.

Step 3 : Set the number of collection points to the number
of clusters obtained in Step 2.

Given the number of collection points to be opened, the
PFL-G algorithm obtains the initial solution by decomposing
the problem into two subproblems, i.., locating collection points
from the set of potential sites and allocating demand points to
the selected collection points, and then solving them iteratively,
i.e., allocations are dome for each alternative of the location.
Here, the location is done by selecting a collection point for
each cluster (obtained from the method to determine the number
of collection points), and for each alternative of the set of collec-
tion points, the allocation is done by solving the generalized
assignment problem (GAP) using the modified one of the
MTHG algorithm of Martello and Toth [21] since it gives fast
and good solutions. In general, the GAP is the problem of as-
signing multiple tasks to agents subject to the availability of
a single resource type consumed by the agents in performing
these tasks. As noted in Kim and Lee [16], in our application,
each demand point can be represented by a task, and each collec-
tion point can be represented by an agent.

The procedure for the modified MTHG algorithm is given
as follows.

® Procedure 2 : (Modified MTHG algorithm for allocation)
Step 1: Initialization
(a) For all unassigned demand points, find the one
(denoted by point ) having the maximum difference
between the largest and the second largest values of
gy, where gy = wi - dy for all / and j, (Recall that
wi and d;j denote the amount of refuse at potential
site i and the distance between potential sites i and
J, respectively.)
{b) Allocate demand point i to collection point j for
which the desirability measure gj has the minimum
value without violating the capacity of the collection
point. If collection point j cannot be allocated, do this
step for the collection point that has the second mini-
mum value of the desirability measure, and so on.
(c) If all demand points are allocated, save the initial
solution and go to Step 2. Otherwise, go to step (a).
Step 2 : Improvement

(a) For each demand point i, find the set 4; of collec-

tion points that give improvements without violating
their capacity restrictions. Here, the set 4; can be
described as follows (In the initial solution, let de-
mand point i be allocated to collection point j*, ie.,
x;;,-* =1).
A= (=] | gs<gj and wi <R},
where R; denotes the remaining capacity of collection
point j. If 4; = ¢ for all i, i.c., no improvement can
be made, stop the algorithm. Otherwise, go to Step (b).
{b) Perform the reallocation that gives the maximum
amount of improvement after evaluating all possible
candidates. Here, a reallocation implies that demand
point i is assigned to the set 4; of collection points.
Repeat this step until there is no improvement.

3.2 Algorithms

3.2.1 Tabu Search Algorithms

Tabu search {TS) is one of the well known local search
techniques that have been successfully applied to various combi-
natorial optimization problems. Starting from an initial solution
(obtained by the method described earlier), TS generates a new
alternative $” in the neighborhood of the original alternative
S. This is usually called a move, which can be made to a neigh-
borhood solution even though it is worse than the given solution.
This makes a TS algorithm escape from a local optimum in
its search for the global optimum. In order to avoid cycling,
TS defines a set of tabu moves (forbidden), and these moves
are stored in a set A, called the tabu list. Elements of A define
all tabu moves that cannot be applied to the current solution.
The size of A is bounded by parameter /, called the tabu list
size. If |4l = 1, before adding a move to A, the oldest element
in it is removed. Note that a tabu move can be allowed if it
creates a solution better than the best objective value obtained
so far, called the aspiration criterion in the literature.

The TS algorithms are explained with : (a) solution repre-
sentation method; (b) neighborhood generation methods, i.e., set
of possible moves applicable to the current solution; (c) defi-
nition of tabu moves with the tabu list size; and (d) termination
condition.

The solution, location and allocation, is represented as two
vectors U = (uy, uz, **, uy) and ¥V = (v;, vy, -+, v,}, where
ui denotes the index of the collection point assigned to potential
site ; and v; = 1 if potential site 7 is selected as a collection
point, and 0 otherwise. Note that the objective value of a given
solution can be easily calculated while checking its feasibility.
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In this paper, we suggest three neighborhood generation meth-
ods, called re-clustering, adding, and removal and insertion.
(Therefore, we suggest three TS algorithms that are different
in the neighborhood generation method.) Each of the neighbor-
hood generation methods is explained below.

® Re-clustering method

In this method, a collection point is removed from a randomly
selected cluster and a new collection point is selected from a
set of potential sites (except for the removed collection point)
within the cluster. Then, the demand points within the selected

-1

cluster and the removed collection point are reallocated to the

new collection point. Hence, the number of collection points
before and after generating a neighborhood solution remains the
same. See <Figure 2> for an example of the re-clustering method.

<Figure 2> Neighborhoods : re—clustering

® Adding method

This method generates a neighborhood solution by opening
an additional colfection point randomly and allocating the de-
mand points nearest to the newly opened collection point while
considering its capacity restriction. Hence, the number of collec-
tion points is increased by one, and also there are certain changes
in the allocations. See <Figure 3> for an example.

Additional
collection
point

<Figure 3> Neighborhoods : adding
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* Removal and insertion method

In this method, the demand point with longest distance from
the corresponding collection point is removed for each cluster.
Then, each removed demand point is reallocated to the collection
point that has the minimum distance while considering the ca-
pacity restriction. See <Figure 4> for an example.

Demand poings”with the longest distances from
the current collection point

<Figure 4> Neighborhoods : Removal and Insertion

Tabu moves are maintained by storing the solutions that have
been visited. In other words, during the search process two lists,
locations of collection points and allocations of demand points
to collection points, were maintained and checked for tabu
moves. As an exceptional case, a tabu move can be allowed
to be chosen if it generates a solution better than the incumbent
solution, i.e., the best objective value obtained so far. Finally,
the TS algorithms were stopped if no improvements have been
made for a certain number of consecutive iterations, denoted

by LTS in this paper.

3.2.2 Simulated Annealing Algorithms

Simulated annealing (SA) also attempts to move from the
current solution to one of its neighborhoods. Starting from an
initial solution, SA generates a new solution §' in the neighbor-
hood of the original S. Then, the change in the objective value,
A = C(S)-C(8), is calculated, where C( ¢ ) is the objective
value of solution « . If A < 0 (for a minimization problem),
the transition to the new solution is accepted. Otherwise, the
transition to the new solution is accepted with a specified proba-
bility denoted by the function exp(-A/), where ¢ is a control
parameter called the temperature. By allowing the moves that
increase the objective value, the SA can escape from a local
minimum. In this paper, three SA algorithms are suggested ac-
cording to the three neighborhood generation methods explained
earlier. In fact, the SA algorithms are same as the TS algorithms
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except for the basic search mechanism.

There are four generic parameters that characterize SA algo-
rithms : (a) initial temperature (#5); (b) epoch length (a), ie.,
number of transitions made with the same temperature; (c) rule
specifying how the temperature is reduced; and (d) termination
condition. In this paper, the temperature is decreased using the
commonly used equation, ¢, — r « ¢, , where # is the temper-
ature used during the kth epoch and r is a positive constant
with a value less than 1, called the cooling ratio in the literature.
Finally, the algorithms were terminated when there is no im-
provement for a certain number of iterations, denoted by Ls.

4. Computational Results

To show the performances of the six search heuristics, com-
putational experiments were done on a number of test problems,
and the results are reported in this section. The six search heu-
ristics are compared with the PFL-G algorithm, the best existing
heuristic among those suggested by Kim and Lee [16]. In fact,
the PFL-G algorithm gave near optimal solutions for the small-
size test instances, i.e., 2% gap in average from the optimal
solution values. The performance measures used are : (a) per-
centage improvements over the PFL-G algorithm; and (b) CPU

{Table 1> Test Results for Search Heuristics : Percentage Improvements

(a) Problems with loose capacity

TS : SA
pc’;:::lntli); r sci)tfes recl uZtSeri ng ad-lt-jisng irgsn;%glr{ recl ussﬁari ng ad?j?ng irﬁsrg?t\glr{
10 0.00(0.0)" 0.00(0.1) 0.00(0.0) 0.00(0.0) 0.00(0.0) 0.000.0)
20 0.21(0.1) 0.08(0.1) 0.08(0.1) 0.21(0.3) 0.21(0.4) 0.08(0.1)
30 0.52(0.1) 0.30(0.3) 0.30(0.2) 0.32(0.3) 0.32(0.3) 0.30(0.0)
40 1.14(0.1) 0.55(0.0) 0.55(0.0) 0.98(0.1) 0.98(0.1) 0.55(0.1)
50 0.23(0.2) 0.18(0.3) 0.18(0.1) 0.23(0.1) 0.23(0.3) 0.18(0.2)
100 0.21(0.1) 0.10(0.0) 0.10(0.1) 0.19(0.1) 0.19(0.0) 0.10(0.1)
200 0.21(0.1) 0.17(0.0) 0.18(0.0) 0.27(0.3) 0.24(0.0) 0.17(0.1)
300 0.15(0.1) 0.13(0.0) 0.13(0.0) 0.17(0.0) 0.17(0.0) 0.14(0.0)
400 0.13(0.0) 0.12(0.1) 0.12(0.2) 0.12(0.0) 0.13(0.1) 0.12¢0.1)
500 0.06(0.0) 0.06(0.1) 0.06(0.1) 0.06(0.0) 0.07(0.1) 0.06(0.2)
Average 0.29(0.1) 0.17(0.1) 0.17(0.1) 0.26(0.1) 0.25(0.1) 0.17(0.1)
Note : '

average of the percentage improvements over initial solutions out of 10 problems and standard deviation(in parenthesis).

(b) Problems with medium capacity

TS SA

pcg\::rr:][ti);r s(i)tfes rec|u-£tsering adLiSng irr?;ne%gz reclui?eri ng adsc‘i'iAng ir,?;ne% 2lr<
10 0.00(0.0) 0.00(0.0) 0.00(0.0} 0.00(0.0) 0.00(0.0) 0.00(0.0)

20 1.20(0.2) 2.35(0.1) 2.24(0.5) 1.22(0.2) 1.27(0.1) 2.26(0.4)

30 1.71(0.2) 1.94(0.2) 1.96(0.1) 1.57(0.1) 1.52(0.2) 1.80(0.2)

40 2.06(0.3) 2.05(0.1) 1.94(0.4) 1.84(0.3) 1.99(0.2) 1.86(0.3)

50 1.59(0.2) 2.76(0.2) 2.85(0.2) 1.82(0.1) 2.02(0.1) 2.94(0.1)
100 1.47(0.3) 2.61(0.2) 2.55(0.2) 1.96(0.2) 1.75(0.2) 2.48(0.2)
200 1.80(0.1) 3.01(0.2) 2.91(0.3) 1.98(02) 1.89(0.2) 2.80(0.2)
300 1.63(0.3) 3.33(0.3) 3.29(0.1) 1.87(0.2) 2.1000.2) 3.21(0.2)
400 1.52(0.2) 3.44(0.1) 3.47(0.2) 2.05(0.2) 1.86(0.1) 3.42(0.2)
500 1.48(0.2) 3.26(0.2) 3.25(0.1) 2.40(0.2) 2.01(0.1) 3.18(0.2)
Average 1.44(0.2) 2.47(0.2) 2.44(0.2) 1.67(0.2) 1.64(0.1) 2.39(0.2)
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(c) Problems with tight capacity
TS SA
pc')\:l(;lr?tti)aelr s(i?:es reclugsering adzisng irr??e?t\:glr{ reclussﬁaring ad?j?ng irr?;necr)t\g'r{
10 0.00(0.0) 0.00(0.0) 0.00(0.0) 0.00(0.0) 0.00(0.0) 0.00(0.0)
20 1.59(0.4) 3.62(0.5) 3.39(0.5) 1.22(0.2) 1.33(0.7) 3.64(0.9)
30 2.13(0.4) 2.58(0.7) 2.52(0.7) 1.81(0.3) 1.71(0.3) 2.50(0.3)
40 2.37(0.3) 2.46(0.6) 2.32(0.5) 1.69(0.5) 1.83(0.8) 2.36(0.5)
50 2.34(0.7) 4.34(0.7) 451(0.1) 2.38(0.1) 2.80(0.2) 4.72(0.4)
100 2.12(0.3) 4.12(0.8) 4.00(0.1) 2.73(0.3) 2.30(0.4) 4.06(0.2)
200 2.62(0.1) 4.74(0.3) 4.64(0.7) 2.67(0.3) 2.53(0.8) 4.55(0.4)
300 2.51(0.3) 5.53(0.4) 5.45(0.9) 2.57(0.2) 2.94(0.7) 5.48(0.3)
400 2.31(0.1) 5.76(0.6) 5.82(0.9) 2.97(0.2) 2.59(0.6) 5.77(0.4)
500 2.30(0.1) 5.45(0.5) 5.43(0.4) 3.73(0.3) 2.94(0.6) 5.50(0.9)
Average 2.03(0.3) 3.86(0.5) 3.81(0.5) 2.18(0.2) 2.10(0.5) 3.86(0.4)

seconds. Here, the percentage improvement of search heuristic
a for a test problem is measured as
100 « (G- C)/Cy,

where C; and C, are the objective values of the initial solution
obtained by the PFL-G algorithm and search heuristic a,
respectively. All the algorithms were coded in C and the test
was done on a workstation with a Xeon processor operating
at 3.2 GHz speed.

To find the appropriate values for the parameters of the search
heuristics, preliminary experiments were done on representative
test problems. For the TS algorithms, several values for tabu
list size / and Ly for termination condition were tested, and

they were set to 50 and 200000, respectively. Also, the parame-
ters of the SA algorithms were set as (9, a, r, Lss) = (1, 20,
0.997, 200000), where 5, a, r and Lg4 represent the initial tem-
perature, the epoch length, the cooling ratio, and the parameter
for the termination condition, respectively.

For the test, 300 problems were generated randomly, i.e. 10
problems for each of 30 combinations of ten levels for the num-
ber of potential sites (10, 20, 30, 40, 50, 100, 200, 300, 400,
and 500) and three levels for the tightness of the collection point
capacity (tight, medium, and loose). The problem data were gen-
erated using the method of Daskin [3]. More specifically, the
x and y coordinates of potential sites were generated from DU(0,

<Table 2> Test Results for Search Heuristics : CPU Seconds

TS SA
pcr)\:grr?t?;rs?t;s reclu1s-tsering adLiSng irr?srg?t\glrf reclussﬁaring adeliABg irr?;ne(r)t\i/glr{

10 1.0* 0.9 1.0 0.9 1.2 1.1

20 1.0 0.8 0.9 1.1 1.1 1.1
30 1.9 1.5 1.5 2.1 2.0 1.7
40 33 2.5 2.7 42 35 2.9
50 4.6 2.8 3.1 5.9 5.1 3.2
100 229 7.6 10.5 293 19.7 10.5
200 139.6 39.6 448 216.6 199.0 382
300 3054 97.5 973 505.5 264.9 86.6
400 455.1 200.5 196.5 803.1 339.7 178.9
500 540.8 366.5 357.6 1143.1 466.2 307.9
Average 147.6 72.0 71.6 2712 130.3 63.2

Note : * average CPU second out of 10 problems.
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100), i.e., a square shaped grid with a size of 100 x 100 unit
lengths, where DU(J, u) denotes the discrete uniform distribution
with range [/, u]. The distance between two potential sites was
obtained by calculating its Euclidean distance and then rounding
it to the nearest integer, and refuse demands at potential sites
were generated from DU(10, 40). The fixed costs were generated
from DU(12000, 15000), and the unit transportation cost was
set to 10. Finally, the capacity of each collection point was set
to 40, 80, and 120 for tight, medium, and loose capacity cases,
respectively.

Test results are given in <Table 1> that summarizes the aver-
- age percentage improvements over the initial solutions obtained
by the PFL-G algorithm. It can be seen from the table that the
search heuristics suggested in this paper improve the initial sol-
utions, especially as the capacity restriction gets tighter. Although
there was not much difference between the TS and the SA algo-
rithms, the TS algorithms were slightly better than the SA algo-
rithms in overall average. Among the three neighborhood gen-
eration methods, the adding and the removal and insertion meth-
ods were better than the reclustering method (except for the
case of loose capacity restriction) since they can search larger
solution spaces. <Table 2> shows the CPU seconds of the search
heuristics. As expected, the search heuristics required much lon-
ger CPU seconds than the PFL-G algorithm. However, all the
heuristics gave the solutions within 8 minutes in average, which
implies that our search heuristics can be used for practical
applications. From the computational test, in summary, we rec-
ommend the TS algorithm with the adding method or the re-
moval and insertion method with respect to solution quality and
computation time,

5. Concluding Remarks

We considered a network design problem for collecting re-
fuses in reverse logistics. The problem, called the capacitated
collection network design problem, is to determine the location
of collection points as well as the allocation of refuses at demand
points to collection points while satisfying the capacity con-
straint at each collection point. The objective is to minimize
the sum of the fixed costs to open collection points and the
transportation costs between demand and collection points. Two
types of search heuristics, tabu search and simulated annealing,
were suggested that incorporate the methods to generate neigh-
borhood solutions. From the computational experiments on test
problems up to 500 potential sites, we showed that both search

heuristics gave improvements over an existing algorithm.

As one of the early research on designing collection networks
for reverse logistics, this research can be extended in several
directions. First, the optimal solution algorithms are worth to
be developed in the theoretical aspect. Second, it is required
to extend the basic model into the ones with other features of
refuse collection systems such as stochastic amounts of refuses,
multiple refuse types, etc. Finally, it is needed to perform certain
case studies on designing real refuse collection systems.
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