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Abstract. In this paper, we investigate uniqueness problems of meromorphic functions

sharing a small function with their differential polynomials, and give some results which

are related to a conjecture of R. Brück, and also improve several previous results.

1. Introduction

In what follows, a meromorphic (resp. entire) function always means a function
which is meromorphic (resp. analytic) in the whole complex plane. We will use
the standard notation in Nevanlinna’s value distribution theory of meromorphic
functions, see, e.g., [10,12,18]. As for the standard notation in the uniqueness theory

of meromorphic functions, suppose that f , g are meromorphic and a ∈ Ĉ = C∪{∞},
resp. a is a small meromorphic function in the usual Nevanlinna theory sense.
Denoting by E(a, f) the set of those points z ∈ C where f(z) = a, resp. f(z) = a(z),
we say that f , g share a IM (ignoring multiplicities), if E(a, f) = E(a, g). Provided
that E(a, f) = E(a, g) and the multiplicities of the zeros of f(z) − a and g(z) − a
are the same at each z ∈ C, then f , g share a CM (counting multiplicities).

Meromorphic functions sharing values with their derivatives has become a sub-
ject of great interest in uniqueness theory recently. The paper [17] by Rubel and
Yang is the starting point of this topic, along with the following.

Theorem A. Let f be a nonconstant entire function. If f and f ′ share two distinct
finite values CM, then f = f ′.

Examples of investigations in this field might be Mues and Steinmetz [16], Frank
and Schwick [4], Yang [19], Gundersen [6–8]. In additional, we recall the following
two representative results: Let k be a positive integer. If a meromorphic (resp.
entire) function f shares two distinct finite values CM (resp. IM) with f (k), then
f = f (k). For the proof, see [5] and [13].
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The following counterexample from [20] shows that the number 2 of shared
values in the above results is necessary. Let k be a positive integer, and let f =
ebz + a − 1, where a and b are constants satisfying bk ̸= 1 and a = bk. Clearly, f
and f (k) share a CM, yet f and f (k) are not the same.

In order to get uniqueness theorems when a meromorphic function shares one
finite value with its k-th derivative, some additional condition might be needed.

In 2003, Yu [23] considered the uniqueness problems with deficiency condition
and obtained the following result.

Theorem B. Let f be a nonconstant entire function, k be a positive integer, and
let a be a small meromorphic function with respect to f such that a(z) ̸≡ 0,∞. If
f − a and f (k) − a share the value 0 CM and δ(0, f) > 3

4 , then f = f (k).

For the other papers on this topic, the reader is invited to see the recent papers
Lahiri [11], Zhang [24], Liu and Gu [14]. Theorem C below due to Lü and Zhang [15]
is a closely related result involving linear differential polynomials. For shortness,
we denote

(1.1) L(f) = f (k) + ak−1f
(k−1) + · · ·+ a1f

′,

where aj(j = 1, . . . , k − 1) are small meromorphic functions with respect to f .

Theorem C. Let f be a nonconstant meromorphic function, n, k be positive integers
and a(z) be a small meromorphic function with respect to f such that a(z) ̸≡ 0,∞.
Let L(f) be given by (1.1). Suppose that fn and L(f) share a IM (resp. CM)
and 6δ(0, f) + (2k + 6)Θ(∞, f) > 2k + 11 (resp. 3δ(0, f) + 3Θ(∞, f) > 5), then
fn = L(f).

Recently, the present author and Yang [26] considered fn sharing a small func-
tion with its k-th derivatives and got the following result.

Theorem D. Let f be a nonconstant meromorphic function, n, k be positive
integers and a(z) be a small meromorphic function with respect to f such that
a(z) ̸≡ 0,∞. If fn − a and (fn)(k) − a share the value 0 IM and

n > 2k + 3 +
√
(2k + 3)(k + 3),

then fn = (fn)(k), and f assumes the form

(1.2) f(z) = ce
λ
n z,

where c is a nonzero constant and λk = 1.

It is natural to ask whether n can be reduced in Theorem D. We give a result
improving Theorem D in Section 2. In Section 3, we improve Theorem C by relaxing
the deficiency condition. We offer some concluding remarks in the final Section 4.
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2. Improvement of Theorem D

In order to get a general result, we consider fn sharing a small meromorphic
function with its differential polynomial L(fn), and obtain the following result.

Theorem 2.1. Suppose that f is a meromorphic function, n and k are positive
integers satisfying n > 2k + 2. Let L(f) be given by (1.1) and a(z) be a small
meromorphic function with respect to f such that a(z) ̸≡ 0,∞. If fn and L(fn)
sharing a(z) IM, then fn = L(fn).

The following corollary that improves Theorem D comes from Theorem 2.1
immediately.

Corollary 2.2. Let f be a nonconstant meromorphic function, n, k be positive
integers and a(z) be a small meromorphic function with respect to f such that a(z) ̸≡
0,∞. If fn and (fn)(k) share the value a IM and n > 2k + 2, then fn = (fn)(k),
and f assumes the form (1.2).

Proof of Theorem 2.1. Denote

F =
fn

a
, G =

L(fn)

a
.

Since fn and L(fn) share a(z) IM, then F and G share 1 IM except the zeros and
poles of a(z). Thus

N

(
r,

1

F − 1

)
= N

(
r,

1

G− 1

)
+ S(r, f).

Suppose that F ̸= G. Noting the above equation and using logarithmic derivative
theorem, we have

N

(
r,

1

F − 1

)
≤ N

(
r,

1

G/F − 1

)
+ S(r, f)

≤ T (r,G/F ) + S(r, f)

= N (r, L(fn)/fn) +m (r, L(fn)/fn) + S(r, f)

≤ kN(r, f) +Nk (r, 1/f
n) + S(r, f)

≤ kN(r, f) + kN (r, 1/f) + S(r, f).

Substituting this into the second main theorem, we get

T (r, fn) = T (r, F ) + S(r, f)

≤ N (r, F ) +N (r, 1/F ) +N (r, 1/(F − 1)) + S(r, F )

≤ (k + 1)N (r, f) + (k + 1)N (r, 1/f) + S(r, f)

≤ (2k + 2)T (r, f) + S(r, f),

which means n ≤ 2k + 2, a contradiction. Then F = G. The assertion follows. 2
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3. Improvement of Theorem C

In this section, we consider the case that fn shares a small function with its
differential polynomial L(f), and get the following result.

Theorem 3.1. Let k(≥ 1), n(≥ 2) be integers and f be a nonconstant meromorphic
function, and let a be a small meromorphic function with respect to f such that
a(z) ̸≡ 0,∞. Let L(f) be given by (1.1). Suppose that fn and L(f) share a IM and

(3.1) 6δ(0, f) + (2k + 6)Θ(∞, f) > 2k + 12− n,

or fn and L(f) share a CM and

(3.2) 3δ(0, f) + (3 + k)Θ(∞, f) > k + 6− n,

then fn = L(f).

Remark 1. The deficiency condition (3.1) is weaker than 6δ(0, f) + (2k +
6)Θ(∞, f) > 2k+11 when n ≥ 2, and (3.2) is weaker than 3δ(0, f)+ 3Θ(∞, f) > 5
when n ≥ 1 + k

3 . Therefore, Theorem 3.1 improves Theorem C when fn and L(f)

share a IM. If n ≥ 1 + k
3 , Theorem 3.1 improves Theorem C when fn and L(f)

share a CM.

In order to prove Theorem 2.1, we need the following lemmas. Firstly, we will
give some notions.

Let p be a positive integer and a ∈ C
∪
{∞}. We denote by Np)

(
r, 1

f−a

)
the

counting function of the zeros of f − a with the multiplicities less than or equal

to p, and by N(p+1

(
r, 1

f−a

)
the counting function of the zeros of f − a with the

multiplicities larger than p; each point in these counting functions is counted only

once. However, Np

(
r, 1

f−a

)
denotes the counting function of the zeros of f − a

where m-fold zeros are counted m times if m ≤ p and p times if m > p. Obviously,

N
(
r, 1

f−a

)
= N1

(
r, 1

f−a

)
.

Let F and G be two nonconstant meromorphic functions such that F and G
share the value 1 IM. Let z0 be a 1-point of F of order p, a 1-point of G of order q.
We denote by NL(r,

1
F−1 ) the counting function of those 1-points of F where p > q;

by N
1)
E (r, 1

F−1 ) the counting function of those 1-points of F where p = q = 1; by

N
(2
E (r, 1

F−1 ) the counting function of those 1-points of F where p = q ≥ 2; each
point in these counting functions is counted only once. In the same way, we can

define NL(r,
1

G−1 ), N
1)
E (r, 1

G−1 ), and N
(2
E (r, 1

G−1 )(see [22]). Particularly, if F and
G share 1 CM, then

(3.3) NL

(
r,

1

F − 1

)
= NL

(
r,

1

G− 1

)
= 0.
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With these notations, if F and G share 1 IM, it is easy to see that

N

(
r,

1

F − 1

)
= N

1)
E

(
r,

1

F − 1

)
+NL

(
r,

1

F − 1

)
(3.4)

+ NL

(
r,

1

G− 1

)
+N

(2
E

(
r,

1

G− 1

)
= N

(
r,

1

G− 1

)
.

Lemma 3.2( [21], Lemma 3). Let

(3.5) H =

(
F ′′

F ′ − 2F ′

F − 1

)
−
(
G′′

G′ − 2G′

G− 1

)
,

where F and G are two nonconstant meromorphic functions. If H ̸= 0, then

(3.6) N
1)
E

(
r,

1

F − 1

)
≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 3.3. Suppose that two nonconstant meromorphic functions F and G share
1 and ∞ IM. Let H be given by (3.5). If H ̸= 0, then

T (r, F ) + T (r,G) ≤ 3N(r, F )+N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N

1)
E

(
r,

1

F −1

)
(3.7)

+ 2N
(2
E

(
r,

1

F−1

)
+3NL

(
r,

1

F−1

)
+3NL

(
r,

1

G−1

)
+ S(r, F )+S(r,G).

Proof. Since F and G share ∞ IM, we deduce from (3.5) that

N(r,H) ≤ N(r, F ) +N(2

(
r,

1

F

)
+N(2

(
r,

1

G

)
+NL

(
r,

1

F − 1

)
(3.8)

+ NL

(
r,

1

G− 1

)
+N0

(
r,

1

F ′

)
+N0

(
r,

1

G′

)
,

where N0(r,
1
F ′ ) denotes the counting function corresponding to the zeros of F ′

which are not the zeros of F and F − 1, N0(r,
1
G′ ) denotes the counting function

corresponding to the zeros of G′ which are not the zeros of G and G−1. The second
main theorem yields

T (r, F ) ≤ N(r, F )+N

(
r,

1

F

)
+N

(
r,

1

F − 1

)
−N0

(
r,

1

F ′

)
+S(r, F ),(3.9)

T (r,G) ≤ N(r,G)+N

(
r,

1

G

)
+N

(
r,

1

G− 1

)
−N0

(
r,

1

G′

)
+S(r,G).(3.10)

Noting that F and G share 1 IM, it is easy to get

N

(
r,

1

F − 1

)
+N

(
r,

1

G− 1

)
= 2N

1)
E

(
r,

1

F − 1

)
+ 2NL

(
r,

1

F − 1

)
+ 2NL

(
r,

1

G− 1

)
+ 2N

(2
E

(
r,

1

G− 1

)
.
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Using Lemma 3.2 and substituting (3.8) into above equation, we obtain

N

(
r,

1

F−1

)
+ N

(
r,

1

G−1

)
≤N(r, F )+N

1)
E

(
r,

1

F−1

)
+3NL

(
r,

1

F−1

)
(3.11)

+ 3NL

(
r,

1

G−1

)
+2N

(2
E

(
r,

1

G−1

)
+N(2

(
r,

1

F

)
+ N(2

(
r,

1

G

)
+N0

(
r,

1

F ′

)
+N0

(
r,

1

G′

)
.

The assertion follows by combining (3.9), (3.10) and (3.12). 2

Lemma 3.4( [25], Lemma 2.4). Suppose that f is a nonconstant meromorphic
function and k, p are positive integers. Let L(f) be given by (1.1). Then

Np (r, 1/L(f)) ≤ kN(r, f) +Np+k (r, 1/f) + S(r, f).

Proof of Theorem 3.1. Denote

(3.12) F =
fn

a
, G =

L(f)

a
.

Let H be given by (3.5). Suppose that H ̸= 0. We discuss the following two cases.

Case 1. Suppose that fn and L(f) share a IM. Then F and G share 1, ∞ IM
except the zeros and poles of a. From Lemma 3.3, we have (3.7). Since

N
1)
E

(
r,

1

F − 1

)
+ 2N

(2
E

(
r,

1

F − 1

)
+ NL

(
r,

1

F − 1

)
+ 2NL

(
r,

1

G− 1

)
≤ N

(
r,

1

G− 1

)
≤ T (r,G) +O(1),

we get from (3.7) and (3.12) that

T (r, F ) ≤ 3N(r, F ) +N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 2NL

(
r,

1

F − 1

)
(3.13)

+NL

(
r,

1

G− 1

)
+ S(r, F ) + S(r,G)

≤ 3N(r, f) + 2N

(
r,

1

f

)
+N2

(
r,

1

L(f)

)
+ 2NL

(
r,

1

F − 1

)
+NL

(
r,

1

G− 1

)
+ S(r, f).
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By Lemma 3.4 and (3.12), we obtain

N2

(
r,

1

L(f)

)
≤ kN(r, f) +N2+k (r, 1/f) + S(r, f)

≤ kN(r, f) +N (r, 1/f) + S(r, f),

NL

(
r,

1

F − 1

)
≤ N

(
r,

F

F ′

)
≤ N

(
r,
F ′

F

)
+ S(r, f)

≤ N (r, F ) +N

(
r,

1

F

)
+ S(r, f)

≤ N (r, f) +N

(
r,

1

f

)
+ S(r, f),

NL

(
r,

1

G− 1

)
≤ N

(
r,

G

G′

)
≤ N

(
r,
G′

G

)
+ S(r, f)

≤ N (r,G) +N

(
r,

1

G

)
+ S(r, f)

≤ (k + 1)N (r, f) +Nk+1 (r, 1/f) + S(r, f)

≤ (k + 1)N (r, f) +N (r, 1/f) + S(r, f).

Substituting the above three inequalities into (3.13) yields

T (r, F ) ≤ (2k + 6)N (r, f) + 6N (r, 1/f) + S(r, f).

Noting that T (r, F ) = nT (r, f) + S(r, f), we get

(3.14) nT (r, f) ≤ (2k + 6)N (r, f) + 6N (r, 1/f) + S(r, f),

which contradicts with (3.1).

Case 2. Suppose that fn and L(f) share a CM. Then F and G share 1 CM,
∞ IM except the zeros and poles of a. By the same reasoning discussed in Case 1,
we obtain (3.13). Since now (3.3) holds, we have

T (r, F ) ≤ 3N(r, f) + 2N

(
r,

1

f

)
+N2

(
r,

1

L(f)

)
+ S(r, f).

Thus

nT (r, f) ≤ 3N(r, f) + 2N (r, 1/f) + kN(r, f) +N2+k (r, 1/f) + S(r, f)

≤ (k + 3)N(r, f) + 3N (r, 1/f) + S(r, f),

which contradicts with (3.2). Therefore, H = 0. By integration, we get from (3.5)

that

(3.15)
1

F − 1
=

A

G− 1
+B,
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where A( ̸= 0) and B are constants. From (3.15) we have

(3.16) G =
(B −A)F + (A−B − 1)

BF − (B + 1)
.

We discuss the following three cases.

Case I. Suppose that B ̸= 0,−1. From (3.16) we have N
(
r, 1/

(
F − B+1

B

))
=

N(r,G). From the second fundamental theorem, we have

nT (r, f) ≤ T (r, F ) + S(r, f)

≤ N(r, F ) +N(r, 1/F ) +N

(
r,

1

F − B+1
B

)
+ S(r, f)

≤ N(r, 1/f) +N(r, F ) +N(r,G) + S(r, f)

≤ N(r, 1/f) + 2N(r, f) + S(r, f),

which contradicts with (3.1) and (3.2).

Case II. Suppose that B = 0. From (3.16) we have

(3.17) G = AF − (A− 1).

If A ̸= 1, from (3.17) we obtain N
(
r, 1/

(
F − A−1

A

))
= N(r, 1/G). By Lemma 3.4

and the second fundamental theorem, we have

nT (r, f) ≤ T (r, F ) + S(r, f)

≤ N(r, F ) +N(r, 1/F ) +N

(
r,

1

F − A−1
A

)
+ S(r, f)

= N(r, f) +N(r, 1/f) +N1(r, 1/G) + S(r, f)

≤ (k + 1)N(r, f) + 2N(r, 1/f) + S(r, f),

which contradicts with (3.1) and (3.2). Thus A = 1. From (3.17) we have F = G.
Then fn = L(f).

Case III. Suppose that B = −1. From (3.16) we have

(3.18) G =
(A+ 1)F −A

F
.

If A ̸= −1, we obtain from (3.18) that N
(
r, 1/

(
F − A

A+1

))
= N(r, 1/G). By the

same reasoning discussed in Case II, we obtain a contradiction. Hence A = −1.
From (3.18), we get F ·G = 1, that is

fn · L(f) = a2,
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and
N(r, f) = S(r, f), N(r, 1/f) = S(r, f).

From the last three equations, we have

T

(
r,
fn+1

a2

)
= T

(
r,

a2

fn+1

)
+O(1) = T

(
r,
L(f)

f

)
+O(1) = S(r, f).

So T (r, f) = S(r, f), which is impossible. This completes the proof of Theorem 3.1.

Theorem 3.5. Let k, n be positive integers and f be a nonconstant meromorphic
function, and let L(f) be given by (1.1). If n > 2k + 12 (resp. n > k + 6), then
there does not exist a small function a(z)( ̸≡ 0,∞) with respect to f such that fn

and L(f) share a IM (resp. CM).

Proof. Suppose that there exists a small function a(z) satisfying the condition of
the Theorem 3.5. Then we obtain fn = L(f) by Theorem 3.1.

Suppose that z0 is a pole of f with the multiplicity p. Then z0 is a pole of fn

and L(f) with the multiplicity np and k + p respectively. Thus np = k + p and
k = (n− 1)p ≥ (n− 1), which is a contradiction. So, f is an entire function. Then

(n− 1)T (r, f) = T
(
r, fn−1

)
= m

(
r, fn−1

)
= m

(
r,
L(f)

f

)
= S(r, f),

which is impossible since n > 1. 2

Remark 2. From the proof of Theorem 3.5. We know that Theorem 3.1 is valid
when n ≤ k + 1.

4. Concluding remarks

As for an entire function sharing a finite value with its derivative, the following
conjecture proposed by Brück [2] is widely studied:

Conjecture. Let f be a nonconstant entire function. Suppose that the hyper-order
of f ,

ρ2(f) := lim sup
r→∞

log log T (r, f)

log r
,

is not a positive integer or infinite. If f and f ′ share one finite value a CM, then

f ′ − a

f − a
= c

for some non-zero constant c.

The conjecture has been verified in special cases only: (1) ρ2(f) < 1
2 , see [3];

(2) a = 0, see [2]; (3) N(r, 1/f ′) = S(r, f), see [2]. However, the corresponding
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conjecture for meromorphic functions fails in general, as shown by Gundersen and
Yang [9], while it remains true in the case of N(r, 1/f ′) = S(r, f), see Al-Khaladi
[1].

Theorem 2.1 shows that the conjecture holds if a meromorphic function fn

shares 1 IM with (fn)′, where n > 4 is an integer. A natural question is:

Question 4.1. Can n in Theorem 2.1 be reduced?
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