Meromorphic Functions Sharing a Small Function with their Differential Polynomials

Jilong Zhang
Beihang University, LMIB and School of Mathematics \& Systems Science, Beijing, 100191, P. R. China
e-mail: jilongzhang2007@gmail.com

Abstract. In this paper, we investigate uniqueness problems of meromorphic functions sharing a small function with their differential polynomials, and give some results which are related to a conjecture of R. Brück, and also improve several previous results.

1. Introduction

In what follows, a meromorphic (resp. entire) function always means a function which is meromorphic (resp. analytic) in the whole complex plane. We will use the standard notation in Nevanlinna's value distribution theory of meromorphic functions, see, e.g., $[10,12,18]$. As for the standard notation in the uniqueness theory of meromorphic functions, suppose that f, g are meromorphic and $a \in \widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$, resp. a is a small meromorphic function in the usual Nevanlinna theory sense. Denoting by $E(a, f)$ the set of those points $z \in C$ where $f(z)=a$, resp. $f(z)=a(z)$, we say that f, g share a IM (ignoring multiplicities), if $E(a, f)=E(a, g)$. Provided that $E(a, f)=E(a, g)$ and the multiplicities of the zeros of $f(z)-a$ and $g(z)-a$ are the same at each $z \in C$, then f, g share a CM (counting multiplicities).

Meromorphic functions sharing values with their derivatives has become a subject of great interest in uniqueness theory recently. The paper [17] by Rubel and Yang is the starting point of this topic, along with the following.

Theorem A. Let f be a nonconstant entire function. If f and f^{\prime} share two distinct finite values $C M$, then $f=f^{\prime}$.

Examples of investigations in this field might be Mues and Steinmetz [16], Frank and Schwick [4], Yang [19], Gundersen [6-8]. In additional, we recall the following two representative results: Let k be a positive integer. If a meromorphic (resp. entire) function f shares two distinct finite values CM (resp. IM) with $f^{(k)}$, then $f=f^{(k)}$. For the proof, see [5] and [13].

Received January 21, 2010; accepted April 23, 2010.
2000 Mathematics Subject Classification: 30D35, 30D20.
Key words and phrases: Uniqueness theorems, small function, meromorphic function. This research was supported by the Fundamental Research Funds for Central Universities no. 300414 and the NNSF of China no. 10771011.

The following counterexample from [20] shows that the number 2 of shared values in the above results is necessary. Let k be a positive integer, and let $f=$ $e^{b z}+a-1$, where a and b are constants satisfying $b^{k} \neq 1$ and $a=b^{k}$. Clearly, f and $f^{(k)}$ share a CM, yet f and $f^{(k)}$ are not the same.

In order to get uniqueness theorems when a meromorphic function shares one finite value with its k-th derivative, some additional condition might be needed.

In 2003, Yu [23] considered the uniqueness problems with deficiency condition and obtained the following result.

Theorem B. Let f be a nonconstant entire function, k be a positive integer, and let a be a small meromorphic function with respect to f such that $a(z) \not \equiv 0, \infty$. If $f-a$ and $f^{(k)}-a$ share the value $0 C M$ and $\delta(0, f)>\frac{3}{4}$, then $f=f^{(k)}$.

For the other papers on this topic, the reader is invited to see the recent papers Lahiri [11], Zhang [24], Liu and Gu [14]. Theorem C below due to Lü and Zhang [15] is a closely related result involving linear differential polynomials. For shortness, we denote

$$
\begin{equation*}
L(f)=f^{(k)}+a_{k-1} f^{(k-1)}+\cdots+a_{1} f^{\prime} \tag{1.1}
\end{equation*}
$$

where $a_{j}(j=1, \ldots, k-1)$ are small meromorphic functions with respect to f.
Theorem C. Let f be a nonconstant meromorphic function, n, k be positive integers and $a(z)$ be a small meromorphic function with respect to f such that $a(z) \not \equiv 0, \infty$. Let $L(f)$ be given by (1.1). Suppose that f^{n} and $L(f)$ share a IM (resp. CM) and $6 \delta(0, f)+(2 k+6) \Theta(\infty, f)>2 k+11$ (resp. $3 \delta(0, f)+3 \Theta(\infty, f)>5$), then $f^{n}=L(f)$.

Recently, the present author and Yang [26] considered f^{n} sharing a small function with its k-th derivatives and got the following result.

Theorem D. Let f be a nonconstant meromorphic function, n, k be positive integers and $a(z)$ be a small meromorphic function with respect to f such that $a(z) \not \equiv 0, \infty$. If $f^{n}-a$ and $\left(f^{n}\right)^{(k)}-a$ share the value 0 IM and

$$
n>2 k+3+\sqrt{(2 k+3)(k+3)},
$$

then $f^{n}=\left(f^{n}\right)^{(k)}$, and f assumes the form

$$
\begin{equation*}
f(z)=c e^{\frac{\lambda}{n} z} \tag{1.2}
\end{equation*}
$$

where c is a nonzero constant and $\lambda^{k}=1$.
It is natural to ask whether n can be reduced in Theorem D . We give a result improving Theorem D in Section 2. In Section 3, we improve Theorem C by relaxing the deficiency condition. We offer some concluding remarks in the final Section 4.

2. Improvement of Theorem D

In order to get a general result, we consider f^{n} sharing a small meromorphic function with its differential polynomial $L\left(f^{n}\right)$, and obtain the following result.

Theorem 2.1. Suppose that f is a meromorphic function, n and k are positive integers satisfying $n>2 k+2$. Let $L(f)$ be given by (1.1) and $a(z)$ be a small meromorphic function with respect to f such that $a(z) \not \equiv 0, \infty$. If f^{n} and $L\left(f^{n}\right)$ sharing $a(z) I M$, then $f^{n}=L\left(f^{n}\right)$.

The following corollary that improves Theorem D comes from Theorem 2.1 immediately.

Corollary 2.2. Let f be a nonconstant meromorphic function, n, k be positive integers and $a(z)$ be a small meromorphic function with respect to f such that $a(z) \not \equiv$ $0, \infty$. If f^{n} and $\left(f^{n}\right)^{(k)}$ share the value a IM and $n>2 k+2$, then $f^{n}=\left(f^{n}\right)^{(k)}$, and f assumes the form (1.2).

Proof of Theorem 2.1. Denote

$$
F=\frac{f^{n}}{a}, \quad G=\frac{L\left(f^{n}\right)}{a}
$$

Since f^{n} and $L\left(f^{n}\right)$ share $a(z)$ IM, then F and G share 1 IM except the zeros and poles of $a(z)$. Thus

$$
\bar{N}\left(r, \frac{1}{F-1}\right)=\bar{N}\left(r, \frac{1}{G-1}\right)+S(r, f)
$$

Suppose that $F \neq G$. Noting the above equation and using logarithmic derivative theorem, we have

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{F-1}\right) & \leq \bar{N}\left(r, \frac{1}{G / F-1}\right)+S(r, f) \\
& \leq T(r, G / F)+S(r, f) \\
& =N\left(r, L\left(f^{n}\right) / f^{n}\right)+m\left(r, L\left(f^{n}\right) / f^{n}\right)+S(r, f) \\
& \leq k \bar{N}(r, f)+N_{k}\left(r, 1 / f^{n}\right)+S(r, f) \\
& \leq k \bar{N}(r, f)+k \bar{N}(r, 1 / f)+S(r, f) .
\end{aligned}
$$

Substituting this into the second main theorem, we get

$$
\begin{aligned}
T\left(r, f^{n}\right) & =T(r, F)+S(r, f) \\
& \leq \bar{N}(r, F)+\bar{N}(r, 1 / F)+\bar{N}(r, 1 /(F-1))+S(r, F) \\
& \leq(k+1) \bar{N}(r, f)+(k+1) \bar{N}(r, 1 / f)+S(r, f) \\
& \leq(2 k+2) T(r, f)+S(r, f),
\end{aligned}
$$

which means $n \leq 2 k+2$, a contradiction. Then $F=G$. The assertion follows.

3. Improvement of Theorem C

In this section, we consider the case that f^{n} shares a small function with its differential polynomial $L(f)$, and get the following result.

Theorem 3.1. Let $k(\geq 1)$, $n(\geq 2)$ be integers and f be a nonconstant meromorphic function, and let a be a small meromorphic function with respect to f such that $a(z) \not \equiv 0, \infty$. Let $L(f)$ be given by (1.1). Suppose that f^{n} and $L(f)$ share a IM and

$$
\begin{equation*}
6 \delta(0, f)+(2 k+6) \Theta(\infty, f)>2 k+12-n, \tag{3.1}
\end{equation*}
$$

or f^{n} and $L(f)$ share a $C M$ and

$$
\begin{equation*}
3 \delta(0, f)+(3+k) \Theta(\infty, f)>k+6-n \tag{3.2}
\end{equation*}
$$

then $f^{n}=L(f)$.
Remark 1. The deficiency condition (3.1) is weaker than $6 \delta(0, f)+(2 k+$ $6) \Theta(\infty, f)>2 k+11$ when $n \geq 2$, and (3.2) is weaker than $3 \delta(0, f)+3 \Theta(\infty, f)>5$ when $n \geq 1+\frac{k}{3}$. Therefore, Theorem 3.1 improves Theorem C when f^{n} and $L(f)$ share a IM. If $n \geq 1+\frac{k}{3}$, Theorem 3.1 improves Theorem C when f^{n} and $L(f)$ share $a \mathrm{CM}$.

In order to prove Theorem 2.1, we need the following lemmas. Firstly, we will give some notions.

Let p be a positive integer and $a \in \mathbb{C} \bigcup\{\infty\}$. We denote by $N_{p)}\left(r, \frac{1}{f-a}\right)$ the counting function of the zeros of $f-a$ with the multiplicities less than or equal to p, and by $N_{(p+1}\left(r, \frac{1}{f-a}\right)$ the counting function of the zeros of $f-a$ with the multiplicities larger than p; each point in these counting functions is counted only once. However, $N_{p}\left(r, \frac{1}{f-a}\right)$ denotes the counting function of the zeros of $f-a$ where m-fold zeros are counted m times if $m \leq p$ and p times if $m>p$. Obviously, $\bar{N}\left(r, \frac{1}{f-a}\right)=N_{1}\left(r, \frac{1}{f-a}\right)$.

Let F and G be two nonconstant meromorphic functions such that F and G share the value 1 IM . Let z_{0} be a 1-point of F of order p, a 1-point of G of order q. We denote by $N_{L}\left(r, \frac{1}{F-1}\right)$ the counting function of those 1-points of F where $p>q$; by $N_{E}^{1)}\left(r, \frac{1}{F-1}\right)$ the counting function of those 1-points of F where $p=q=1$; by $N_{E}^{(2}\left(r, \frac{1}{F-1}\right)$ the counting function of those 1-points of F where $p=q \geq 2$; each point in these counting functions is counted only once. In the same way, we can define $N_{L}\left(r, \frac{1}{G-1}\right), N_{E}^{1)}\left(r, \frac{1}{G-1}\right)$, and $N_{E}^{(2}\left(r, \frac{1}{G-1}\right)$ (see [22]). Particularly, if F and G share 1 CM , then

$$
\begin{equation*}
N_{L}\left(r, \frac{1}{F-1}\right)=N_{L}\left(r, \frac{1}{G-1}\right)=0 \tag{3.3}
\end{equation*}
$$

With these notations, if F and G share 1 IM , it is easy to see that

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{F-1}\right) & =N_{E}^{1)}\left(r, \frac{1}{F-1}\right)+N_{L}\left(r, \frac{1}{F-1}\right) \tag{3.4}\\
& +N_{L}\left(r, \frac{1}{G-1}\right)+N_{E}^{(2}\left(r, \frac{1}{G-1}\right)=\bar{N}\left(r, \frac{1}{G-1}\right)
\end{align*}
$$

Lemma 3.2([21], Lemma 3). Let

$$
\begin{equation*}
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right) \tag{3.5}
\end{equation*}
$$

where F and G are two nonconstant meromorphic functions. If $H \neq 0$, then

$$
\begin{equation*}
N_{E}^{1)}\left(r, \frac{1}{F-1}\right) \leq N(r, H)+S(r, F)+S(r, G) \tag{3.6}
\end{equation*}
$$

Lemma 3.3. Suppose that two nonconstant meromorphic functions F and G share 1 and ∞ IM. Let H be given by (3.5). If $H \neq 0$, then

$$
\begin{align*}
T(r, F)+T(r, G) & \leq 3 \bar{N}(r, F)+N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+N_{E}^{1)}\left(r, \frac{1}{F-1}\right) \tag{3.7}\\
& +2 N_{E}^{(2}\left(r, \frac{1}{F-1}\right)+3 N_{L}\left(r, \frac{1}{F-1}\right)+3 N_{L}\left(r, \frac{1}{G-1}\right) \\
& +S(r, F)+S(r, G) .
\end{align*}
$$

Proof. Since F and G share ∞ IM, we deduce from (3.5) that

$$
\begin{align*}
N(r, H) & \leq \bar{N}(r, F)+N_{(2}\left(r, \frac{1}{F}\right)+N_{(2}\left(r, \frac{1}{G}\right)+N_{L}\left(r, \frac{1}{F-1}\right) \tag{3.8}\\
& +N_{L}\left(r, \frac{1}{G-1}\right)+N_{0}\left(r, \frac{1}{F^{\prime}}\right)+N_{0}\left(r, \frac{1}{G^{\prime}}\right)
\end{align*}
$$

where $N_{0}\left(r, \frac{1}{F^{\prime}}\right)$ denotes the counting function corresponding to the zeros of F^{\prime} which are not the zeros of F and $F-1, N_{0}\left(r, \frac{1}{G^{\prime}}\right)$ denotes the counting function corresponding to the zeros of G^{\prime} which are not the zeros of G and $G-1$. The second main theorem yields

$$
\begin{align*}
T(r, F) & \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F-1}\right)-N_{0}\left(r, \frac{1}{F^{\prime}}\right)+S(r, F) \tag{3.9}\\
T(r, G) & \leq \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G-1}\right)-N_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, G) \tag{3.10}
\end{align*}
$$

Noting that F and G share 1 IM , it is easy to get

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right) & =2 N_{E}^{1)}\left(r, \frac{1}{F-1}\right)+2 N_{L}\left(r, \frac{1}{F-1}\right) \\
& +2 N_{L}\left(r, \frac{1}{G-1}\right)+2 N_{E}^{(2}\left(r, \frac{1}{G-1}\right)
\end{aligned}
$$

Using Lemma 3.2 and substituting (3.8) into above equation, we obtain

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{F-1}\right) & +\bar{N}\left(r, \frac{1}{G-1}\right) \leq \bar{N}(r, F)+N_{E}^{1)}\left(r, \frac{1}{F-1}\right)+3 N_{L}\left(r, \frac{1}{F-1}\right) \tag{3.11}\\
& +3 N_{L}\left(r, \frac{1}{G-1}\right)+2 N_{E}^{(2}\left(r, \frac{1}{G-1}\right)+N_{(2}\left(r, \frac{1}{F}\right) \\
& +N_{(2}\left(r, \frac{1}{G}\right)+N_{0}\left(r, \frac{1}{F^{\prime}}\right)+N_{0}\left(r, \frac{1}{G^{\prime}}\right) .
\end{align*}
$$

The assertion follows by combining (3.9), (3.10) and (3.12).
Lemma 3.4([25], Lemma 2.4). Suppose that f is a nonconstant meromorphic function and k, p are positive integers. Let $L(f)$ be given by (1.1). Then

$$
N_{p}(r, 1 / L(f)) \leq k \bar{N}(r, f)+N_{p+k}(r, 1 / f)+S(r, f)
$$

Proof of Theorem 3.1. Denote

$$
\begin{equation*}
F=\frac{f^{n}}{a}, \quad G=\frac{L(f)}{a} \tag{3.12}
\end{equation*}
$$

Let H be given by (3.5). Suppose that $H \neq 0$. We discuss the following two cases.
Case 1. Suppose that f^{n} and $L(f)$ share a IM. Then F and G share $1, \infty$ IM except the zeros and poles of a. From Lemma 3.3, we have (3.7). Since

$$
\begin{aligned}
N_{E}^{1)}\left(r, \frac{1}{F-1}\right)+2 N_{E}^{(2}\left(r, \frac{1}{F-1}\right) & +N_{L}\left(r, \frac{1}{F-1}\right)+2 N_{L}\left(r, \frac{1}{G-1}\right) \\
& \leq N\left(r, \frac{1}{G-1}\right) \leq T(r, G)+O(1)
\end{aligned}
$$

we get from (3.7) and (3.12) that

$$
\begin{align*}
T(r, F) \leq & 3 \bar{N}(r, F)+N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+2 N_{L}\left(r, \frac{1}{F-1}\right) \tag{3.13}\\
& +N_{L}\left(r, \frac{1}{G-1}\right)+S(r, F)+S(r, G) \\
\leq & 3 \bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{f}\right)+N_{2}\left(r, \frac{1}{L(f)}\right)+2 N_{L}\left(r, \frac{1}{F-1}\right) \\
& +N_{L}\left(r, \frac{1}{G-1}\right)+S(r, f) .
\end{align*}
$$

By Lemma 3.4 and (3.12), we obtain

$$
\begin{aligned}
N_{2}\left(r, \frac{1}{L(f)}\right) & \leq k \bar{N}(r, f)+N_{2+k}(r, 1 / f)+S(r, f) \\
& \leq k \bar{N}(r, f)+N(r, 1 / f)+S(r, f), \\
N_{L}\left(r, \frac{1}{F-1}\right) & \leq N\left(r, \frac{F}{F^{\prime}}\right) \leq N\left(r, \frac{F^{\prime}}{F}\right)+S(r, f) \\
& \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+S(r, f) \\
& \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)+S(r, f), \\
N_{L}\left(r, \frac{1}{G-1}\right) & \leq N\left(r, \frac{G}{G^{\prime}}\right) \leq N\left(r, \frac{G^{\prime}}{G}\right)+S(r, f) \\
& \leq \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+S(r, f) \\
& \leq(k+1) \bar{N}(r, f)+N_{k+1}(r, 1 / f)+S(r, f) \\
& \leq(k+1) \bar{N}(r, f)+N(r, 1 / f)+S(r, f)
\end{aligned}
$$

Substituting the above three inequalities into (3.13) yields

$$
T(r, F) \leq(2 k+6) \bar{N}(r, f)+6 N(r, 1 / f)+S(r, f)
$$

Noting that $T(r, F)=n T(r, f)+S(r, f)$, we get

$$
\begin{equation*}
n T(r, f) \leq(2 k+6) \bar{N}(r, f)+6 N(r, 1 / f)+S(r, f) \tag{3.14}
\end{equation*}
$$

which contradicts with (3.1).
Case 2. Suppose that f^{n} and $L(f)$ share a CM. Then F and G share 1 CM, ∞ IM except the zeros and poles of a. By the same reasoning discussed in Case 1, we obtain (3.13). Since now (3.3) holds, we have

$$
T(r, F) \leq 3 \bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{f}\right)+N_{2}\left(r, \frac{1}{L(f)}\right)+S(r, f)
$$

Thus

$$
\begin{aligned}
n T(r, f) & \leq 3 \bar{N}(r, f)+2 \bar{N}(r, 1 / f)+k \bar{N}(r, f)+N_{2+k}(r, 1 / f)+S(r, f) \\
& \leq(k+3) \bar{N}(r, f)+3 N(r, 1 / f)+S(r, f),
\end{aligned}
$$

which contradicts with (3.2). Therefore, $H=0$. By integration, we get from (3.5) that

$$
\begin{equation*}
\frac{1}{F-1}=\frac{A}{G-1}+B \tag{3.15}
\end{equation*}
$$

where $A(\neq 0)$ and B are constants. From (3.15) we have

$$
\begin{equation*}
G=\frac{(B-A) F+(A-B-1)}{B F-(B+1)} \tag{3.16}
\end{equation*}
$$

We discuss the following three cases.
Case I. Suppose that $B \neq 0,-1$. From (3.16) we have $\bar{N}\left(r, 1 /\left(F-\frac{B+1}{B}\right)\right)=$ $\bar{N}(r, G)$. From the second fundamental theorem, we have

$$
\begin{aligned}
n T(r, f) & \leq T(r, F)+S(r, f) \\
& \leq \bar{N}(r, F)+\bar{N}(r, 1 / F)+\bar{N}\left(r, \frac{1}{F-\frac{B+1}{B}}\right)+S(r, f) \\
& \leq \bar{N}(r, 1 / f)+\bar{N}(r, F)+\bar{N}(r, G)+S(r, f) \\
& \leq \bar{N}(r, 1 / f)+2 \bar{N}(r, f)+S(r, f)
\end{aligned}
$$

which contradicts with (3.1) and (3.2).
Case II. Suppose that $B=0$. From (3.16) we have

$$
\begin{equation*}
G=A F-(A-1) . \tag{3.17}
\end{equation*}
$$

If $A \neq 1$, from (3.17) we obtain $\bar{N}\left(r, 1 /\left(F-\frac{A-1}{A}\right)\right)=\bar{N}(r, 1 / G)$. By Lemma 3.4 and the second fundamental theorem, we have

$$
\begin{aligned}
n T(r, f) & \leq T(r, F)+S(r, f) \\
& \leq \bar{N}(r, F)+\bar{N}(r, 1 / F)+\bar{N}\left(r, \frac{1}{F-\frac{A-1}{A}}\right)+S(r, f) \\
& =\bar{N}(r, f)+\bar{N}(r, 1 / f)+N_{1}(r, 1 / G)+S(r, f) \\
& \leq(k+1) \bar{N}(r, f)+2 N(r, 1 / f)+S(r, f),
\end{aligned}
$$

which contradicts with (3.1) and (3.2). Thus $A=1$. From (3.17) we have $F=G$. Then $f^{n}=L(f)$.

Case III. Suppose that $B=-1$. From (3.16) we have

$$
\begin{equation*}
G=\frac{(A+1) F-A}{F} . \tag{3.18}
\end{equation*}
$$

If $A \neq-1$, we obtain from (3.18) that $\bar{N}\left(r, 1 /\left(F-\frac{A}{A+1}\right)\right)=\bar{N}(r, 1 / G)$. By the same reasoning discussed in Case II, we obtain a contradiction. Hence $A=-1$. From (3.18), we get $F \cdot G=1$, that is

$$
f^{n} \cdot L(f)=a^{2},
$$

and

$$
N(r, f)=S(r, f), \quad N(r, 1 / f)=S(r, f)
$$

From the last three equations, we have

$$
T\left(r, \frac{f^{n+1}}{a^{2}}\right)=T\left(r, \frac{a^{2}}{f^{n+1}}\right)+O(1)=T\left(r, \frac{L(f)}{f}\right)+O(1)=S(r, f)
$$

So $T(r, f)=S(r, f)$, which is impossible. This completes the proof of Theorem 3.1.

Theorem 3.5. Let k, n be positive integers and f be a nonconstant meromorphic function, and let $L(f)$ be given by (1.1). If $n>2 k+12$ (resp. $n>k+6$), then there does not exist a small function $a(z)(\not \equiv 0, \infty)$ with respect to f such that f^{n} and $L(f)$ share a IM (resp. CM).
Proof. Suppose that there exists a small function $a(z)$ satisfying the condition of the Theorem 3.5. Then we obtain $f^{n}=L(f)$ by Theorem 3.1.

Suppose that z_{0} is a pole of f with the multiplicity p. Then z_{0} is a pole of f^{n} and $L(f)$ with the multiplicity $n p$ and $k+p$ respectively. Thus $n p=k+p$ and $k=(n-1) p \geq(n-1)$, which is a contradiction. So, f is an entire function. Then

$$
(n-1) T(r, f)=T\left(r, f^{n-1}\right)=m\left(r, f^{n-1}\right)=m\left(r, \frac{L(f)}{f}\right)=S(r, f)
$$

which is impossible since $n>1$.
Remark 2. From the proof of Theorem 3.5. We know that Theorem 3.1 is valid when $n \leq k+1$.

4. Concluding remarks

As for an entire function sharing a finite value with its derivative, the following conjecture proposed by Brück [2] is widely studied:

Conjecture. Let f be a nonconstant entire function. Suppose that the hyper-order of f,

$$
\rho_{2}(f):=\limsup _{r \rightarrow \infty} \frac{\log \log T(r, f)}{\log r},
$$

is not a positive integer or infinite. If f and f^{\prime} share one finite value a $C M$, then

$$
\frac{f^{\prime}-a}{f-a}=c
$$

for some non-zero constant c.
The conjecture has been verified in special cases only: (1) $\rho_{2}(f)<\frac{1}{2}$, see [3]; (2) $a=0$, see $[2]$; (3) $N\left(r, 1 / f^{\prime}\right)=S(r, f)$, see [2]. However, the corresponding
conjecture for meromorphic functions fails in general, as shown by Gundersen and Yang [9], while it remains true in the case of $N\left(r, 1 / f^{\prime}\right)=S(r, f)$, see Al-Khaladi [1].

Theorem 2.1 shows that the conjecture holds if a meromorphic function f^{n} shares 1 IM with $\left(f^{n}\right)^{\prime}$, where $n>4$ is an integer. A natural question is:

Question 4.1. Can n in Theorem 2.1 be reduced?

References

[1] A. Al-Khaladi, On meromorphic functions that share one value with their derivative, Analysis, 25(2005), 131-140.
[2] R. Brück, On entire functions which share one value CM with their first derivative, Result. in Math., 30(1996), 21-24.
[3] Z. X. Chen and K. H. Shon, On conjecture of R. Brück concerning the entire function sharing one value CM with its derivative, Taiwanese J. Math., 8(2004), 235-244.
[4] G. Frank and W. Schwick, Meromorphe Funktionen, die mit einer Ableitung drei Werte teilen, Result. in Math., 22(1992), 679-684.
[5] G. Frank and G. Weissenborn, Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen, Complex Variables Theory Appl., 7(1986), 33-43.
[6] G. G. Gundersen, Meromorphic functions that share two finite values with their derivatives, Pacific J. Math., 105(1983), 299-309.
[7] G. G. Gundersen, When two entire functions and also their first derivatives have the same zeros, Indiana Univ. Math. J., 30(1981), 293-303.
[8] G. G. Gundersen, Meromorphic functions that share finite values with their derivatives, J. Math. Anal. Appl., 75(1980), 441-446.
[9] G. G. Gundersen and L. Z. Yang, Entire functions that share one value with one or two of their derivatives, J. Math, Anal. Appl., 223(1998), 88-95.
[10] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[11] I. Lahiri, Uniqueness of a meromorphic function and its derivative, J. Inequal. Pure Appl. Math., 5(2004), no.1, Art. 20.
[12] I. Laine, Nevanlinna Theory and Complex Differential Equations. Walter de Gruyter, Berlin-New York, 1993.
[13] P. Li and C. C. Yang, When an entire function and its linear differential polynomial share two values, Ill. J. Math., 44(2000), 349-361.
[14] L. P. Liu and Y. X. Gu, Uniqueness of meromorphic functions that share one small function with their derivatives, Kodai Math. J., 27(2004), 272-279.
[15] W. Lü and T. Zhang, On uniqueness of a meromorphic function with its derivative, J. Anal. Appl., 6(2008), 41-53.
[16] E. Mues and N. Steinmetz, Meromorphe Funktionen, die mit ihrer ersten und zweiten Ableitung einen endlichen Wert teilen, Complex Variables Theory Appl., 6(1986), 5171.
[17] L. A. Rubel and C. C. Yang, Values shared by an entire function and its derivative, Lecture Notes in Math., $\mathbf{5 9 9}$ (1977), Springer-Verlag, Berlin, 101-103.
[18] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, Dordrecht, 2003.
[19] L. Z. Yang, Entire functions that share finite values with their derivatives, Bull. Austral. Math. Soc., 41(1990), 337-342.
[20] L. Z. Yang, Meromorphic functions that share two values, J. Math. Anal. Appl., 209(1997), 542-550.
[21] H. X. Yi, Uniqueness theorems for meromorphic functions whose n-th derivatives share the same 1-points, Complex Var. Theory Appl., 34(1997), 421-436.
[22] H. X. Yi, Unicity theorems for entire or meromorphic functions, Acta Math. Sin. (New Series), 10(1994), 121-131.
[23] K. W. Yu, On entire and meromorphic functions that share small functions with their derivatives, J. Inequal. Pure Appl. Math., 4(2003), no.1, Art. 21.
[24] Q. C. Zhang, Meromorphic function that share one small function with its derivative, J. Inequal. Pure Appl. Math., 6(4) Art. 116, 2005.
[25] J. L. Zhang and L. Z. Yang, Some results related to a conjecture of R. Brück, J. Inequal. Pure Appl. Math., 8(2007), no.1, Art. 18.
[26] J. L. Zhang and L. Z. Yang, A power of a meromorphic function sharing a small function with its derivative, Ann. Acad. Sci. Fenn. Math., 34(2009), 249-260.

