# When Some Complement of an EC-Submodule is a Direct Summand 

Canan Celep Yücel, Denizli<br>Department of Mathematics, Faculty of Science and Art, Pamukkale University, 20070, Denizli, Turkey<br>e-mail : ccyucel@pau.edu.tr<br>Adnan Tercan, Ankara*<br>Department of Mathematics, Hacettepe University, Beytepe Campus, 06532, Ankara, Turkey<br>$e$-mail : tercan@hacettepe.edu.tr

Abstract. A module $M$ is said to satisfy the $E C_{11}$ condition if every ec-submodule of $M$ has a complement which is a direct summand. We show that for a multiplication module over a commutative ring the $E C_{11}$ and P -extending conditions are equivalent. It is shown that the $E C_{11}$ property is not inherited by direct summands. Moreover, we prove that if $M$ is an $E C_{11}$-module where $S o c M$ is an ec-submodule, then it is a direct sum of a module with essential socle and a module with zero socle. An example is given to show that the reverse of the last result does not hold.

## 1. Introduction

Throughout this article, all rings are associative with unity and $R$ denotes such a ring. All modules are unital right $R$-modules. Recall that a module is said to be extending or $C S$ or said to satisfy the $C_{1}$ condition if every submodule is essential in a direct summand. Following [9], we call a (closed) submodule as ec-(closed) submodule if it contains essentially a cyclic submodule. A module $M$ is said to be principally extending (or $P$-extending) if every cyclic submodule of $M$ is essential in a direct summand. Recall that, an $R$-module $M$ is said to be a multiplication module if for each $X \leq M$ there exists $A_{R} \leq R_{R}$ such that $X=M A$ (see, for example [1], [8]). Following [6], a module is said to be ECS if every ec-closed submodule is a direct summand. In [11], the authors investigated a weakened form of the $C_{1}$ condition: Every submodule has a complement which is a direct summand. This weakened $C_{1}$ property is called the $C_{11}$ condition. For recent results on $C_{11-}$

[^0]modules and rings, refer to [3] and [12].
In this article, we study modules whose every ec-submodule has a complement which is a direct summand. We call this property as $E C_{11}$ condition. It is easy to check that for a module $M E C_{11}$ condition is equivalent to the property if every cyclic submodule of $M$ has a complement which is a direct summand of $M$. Clearly, the $C_{11}$ condition implies the $E C_{11}$ property.

In section 1, we consider connections between the $E C_{11}$ condition, and various other generalizations of the $C_{1}$ condition. As an application we show that the $E C_{11}$ condition is equivalent to the $P$-extending for the class of multiplication modules. In section 2, we show that the $E C_{11}$ property is not inherited by direct summands. However, we obtain conditions which make direct summands of an $E C_{11}$-module have $E C_{11}$ condition. We also show that if $M$ is an $E C_{11}$-module and $r(M)$ is an ec-submodule of $M$ where $r$ is any left exact preradical, then $M$ has a decomposition $M_{1} \oplus M_{2}$ such that $r\left(M_{1}\right)$ is essential in $M_{1}$ and $r\left(M_{2}\right)=0$. Finally, we provide a counter example which shows that the converse of the latter decomposition result does not hold, in general.

Let $R$ be a ring and $M$ a right $R$-module. If $X \subseteq M$, then $X \leq M$ denotes $X$ is a submodule of $M$. Moreover, $\operatorname{Soc} M, \operatorname{End}(M)$ and $J(R)$ symbolize the socle of $M$, the ring of endomorphisms of $M$ and the Jacobson radical of $R$, respectively. We use $S(R, M)$ to denote the split-null extension of $M$ by $R$. A ring is called Abelian if every idempotent is central. Other terminology and notation can be found in [2], [7] and [10].

## 2. Preliminary results

In this section, we study relationships between the $E C_{11}$ condition and various generalizations of the $C_{1}$ condition. Recall from [4], a module is FI-extending if every fully invariant submodule is essential in a direct summand.

Lemma 2.1. Let $N, K$ be submodules of $M$ such that $N \cap K=0$. Then $K$ is a complement of $N$ in $M$ if and only if $K$ is closed in $M$ and $N \oplus K$ is essential in $M$.
Proof. Simple to check.
Proposition 2.2. Let $M$ be a module. Then the following statements are equivalent.
(i) $M$ has $E C_{11}$.
(ii) For any ec-closed submodule $L$ in $M$, there exists a direct summand $K$ of $M$ such that $K$ is a complement of $L$ in $M$.
(iii) For any ec-submodule $N$ in $M$, there exists a direct summand $K$ of $M$ such that $K \cap N=0$ and $K \oplus N$ is essential submodule of $M$.
(iv) For any ec-closed submodule $L$ in $M$, there exists a direct summand $K$ of $M$ such that $K \cap L=0$ and $K \oplus L$ is essential submodule of $M$.
Proof. (i) $\Leftrightarrow$ (ii) and (iii) $\Leftrightarrow$ (iv) Obvious.
(i) $\Leftrightarrow$ (iii) Follows from Lemma 2.1.

Lemma 2.3. Let $M_{R}$ be a module. Consider the following statements:
(i) $M_{R}$ is $E C S$
(ii) $M_{R}$ is $P$-extending
(iii) $M_{R}$ is $E C_{11-m o d u l e}$
(iv) $M_{R}$ is $C_{11}$-module

Then (i) $\Rightarrow$ (ii) $\Rightarrow$ (iii) and (iv) $\Rightarrow$ (iii). In general, the converses to these implications do not hold.
Proof. (i) $\Rightarrow$ (ii). Clear by [6, Proposition 1.1].
(ii) $\Rightarrow$ (iii). Let $K$ be an ec-closed submodule of $M$. Then there exists $x \in K$ such that $x R$ is essential in $K$. Since $M$ is P-extending, there exists a direct summand $D$ of $M$ such that $x R$ is essential in $D$. Now $M=D \oplus D^{\prime}$ for some submodule $D^{\prime}$ of $M$. Then $K \cap D^{\prime}=0$ and $K \oplus D^{\prime}$ is essential in $M$. By Lemma 2.1, $M$ is an $E C_{11}$-module.
(iv) $\Rightarrow$ (iii) Clear.

Let $R$ be the ring as in [5, Example 3.2] i.e., $R=\left[\begin{array}{cc}\mathbb{Z}_{2} & \mathbb{Z}_{2} \\ 0 & \mathbb{Z}\end{array}\right]$. Then $R$ is right P-extending. However, $R_{R}$ is not ECS-module. Thus (ii) $\nRightarrow(\mathrm{i})$. Now, let $M$ be the $\mathbb{Z}[x]$-module $\mathbb{Z}[x] \oplus \mathbb{Z}[x]$. So $M$ is an $E C_{11}$-module. But $M$ is not P-extending, by [6, Proposition 1.2]. Thus (iii) $\nRightarrow$ (ii).

Finally, let $R$ be the ring as in [10, Example 7.54]. Then $R$ is a commutative, regular ring which is not Baer. Now by [4, Theorem 4.7 (iii)], $R_{R}$ is not FI-extending. Hence, [3, Proposition 1.2] yields that $R_{R}$ is not $C_{11}$-module. Thus (iii) $\nRightarrow$ (iv).

Corollary 2.4. Let $M_{R}$ be an indecomposable module. Then the following statements are equivalent.
(i) $M_{R}$ is $E C S$
(ii) $M_{R}$ is $P$-extending
(iii) $M_{R}$ is $E C_{11-m o d u l e}$
(iv) $M_{R}$ is uniform

Proof. (i) $\Rightarrow$ (ii) and (ii) $\Rightarrow$ (iii) follow from Lemma 2.3.
(iii) $\Rightarrow$ (iv) Let $0 \neq X \leq M$. Then there exists $0 \neq x \in X$. Let $L$ be any closure of $x R$ in $M$. Thus $L$ is an ec-closed submodule of $M$. By hypothesis there exists a direct summand $D$ of $M$ such that $L \cap D=0$ and $L \oplus D$ is essential in $M$. It follows that $L$ is essential in $M$. Since $L$ is complement of $M$, then $L=M$. Hence $X$ is essential in $M$. Thus $M_{R}$ is uniform.
(iv) $\Rightarrow$ (i) Obvious.

Theorem 2.5. Let $M$ be an $R$-module such that $\operatorname{End}\left(M_{R}\right)$ is Abelian and $X \leq M$ implies $X=\sum_{i \in I} h_{i}(M)$, where $h_{i} \in \operatorname{End}\left(M_{R}\right)$. Then $M$ is $E C_{11}$-module if and only if $M$ is $P$-extending.
Proof. Assume $M$ is $E C_{11}$-module and $X$ is a cyclic submodule of $M$. Let $Y$ be a closure of $X$ in $M$. Then $X$ is essential in $Y$. So $Y$ is an ec-closure submodule
of $M$. Now $Y=\sum_{i \in I} h_{i}(M)$, where each $h_{i} \in \operatorname{End}\left(M_{R}\right)$. By hypothesis, $e M$ is a complement of $Y$ where $e^{2}=e \in \operatorname{End}\left(M_{R}\right)$. Let $0 \neq y \in Y$. Then $y=e y+(1-e) y$. But $y=\sum_{i \in I} h_{i}\left(m_{i}\right)$ where $m_{i} \in M$. Thus $e y=e \sum_{i \in I} h_{i}\left(m_{i}\right)=\sum_{i \in I} h_{i}\left(\left(e m_{i}\right) \in\right.$ $Y \cap e M=0$ i.e., $y=(1-e) y$. Hence $Y$ is essential in $(1-e) M$. Then $Y=(1-e) M$ is direct summand of $M$. Hence $M_{R}$ is P-extending. The converse follows from Lemma 2.3.

Corollary 2.6. If $M$ is an $R$-module satisfying any of the following conditions, then $M$ is $E C_{11}$-module if and only if $M$ is $P$-extending. (i) $M_{R}=R_{R}$ and $R$ is Abelian. (ii) $M$ is cyclic and $R$ is commutative. (iii) $M$ is a multiplication module and $R$ is commutative.
Proof. By Theorem 2.5 the result is true for condition (i). Now assume that $M$ is cyclic and $R$ is commutative. There exists $B_{R} \leq R_{R}$ such that $M_{R}$ is isomorphic to $R / B$. Let $Y / B$ be an $R$-submodule of $R / B$. So $Y / B=\left(\sum_{i \in I} y_{i} R\right)+B=$ $\left(\sum_{i \in I} y_{i} R+B\right) R$, where each $y_{i} \in Y$. Define $h_{i}: R / B \rightarrow R / B$ by $h_{i}(r+B)=y_{i}+B$. Then $h_{i} \in \operatorname{End}\left((R / B)_{R}\right)$. Hence $Y / B=\sum_{i \in I} h_{i}(R / B)$. Since $R$ is commutative, $\operatorname{End}\left((R / B)_{R}\right)$ is commutative. Thus Theorem 2.5 yields the result for condition (ii).

Finally, assume that $M$ is a multiplication module and $R$ is commutative. Let $X=M A$, where $A_{R} \leq R_{R}$. For each $a \in A$ define $h_{a}: M \rightarrow M$ by $h_{a}(m)=m a$ for $m \in M$. Then $X=M A=\sum_{a \in A} h_{a}(M)$. Observe that every submodule of a multiplication module is fully invariant. By [4, Lemma 1.9], if $e^{2}=e \in \operatorname{End}\left(M_{R}\right)$, then $e$ and $1-e \in S_{l}\left(\operatorname{End}\left(M_{R}\right)\right)$ where $S_{l}\left(\operatorname{End}\left(M_{R}\right)\right)$ is the set of all left semicentral idempotent elements of $\operatorname{End}\left(M_{R}\right)$. Hence $e$ is central. So $\operatorname{End}\left(M_{R}\right)$ is Abelian. Again, Theorem 2.5 yields the result.

## 3. Direct summands of an $E C_{11}$-module

In contrast to CS-modules, direct summands of a $C_{11}$-module need not satisfy the $C_{11}$ condition, in general (see [12]). Our next result shows that $E C_{11}$ property does not inherited by direct summands of a module which satisfies the $E C_{11}$ condition.

Proposition 3.1. Let $n \geq 3$ be any odd integer. Let $\mathbb{R}$ be the real field and $S$ the polynomial ring $\mathbb{R}\left[x_{1}, x_{2}, \cdots, x_{n}\right]$. Then the ring $R=S / S s$, where $s=\sum_{i=1}^{n} x_{i}^{2}-1$, is a commutative Noetherian domain and the free $R$-module $M=\bigoplus_{i=1}^{n} R$ contains a direct summand which does not satisfy $E C_{11}$.
Proof. It is clear that $M_{R}$ satisfies $E C_{11}$. By the proof of [12, Example 4], $M=K \oplus K^{\prime}$ for some submodules $K, K^{\prime}$ of $M$ such that $K^{\prime} \cong R$ and $K$ is indecomposable. Since $K$ has uniform dimension 2, Corollary 2.4 yields that $K_{R}$ does not satisfy $E C_{11}$ condition.

Observe that the submodule $K_{R}$ in the proof of Proposition 3.1 is a complement which is not an ec-closed submodule of $M$. In the rest of this note we deal with direct summands of an $E C_{11}$-module.

Lemma 3.2. Let $M$ be an $E C_{11-m o d u l e ~ a n d ~} X$ a submodule. If the intersection of $X$ with any direct summand of $M$ is a direct summand of $X$, then $X$ is an $E C_{11-}$ module.
Proof. Clear.

Recall that a module $M$ has SIP if the intersection of two direct summands of $M$ is also a direct summand (see [15]).

Corollary 3.3. Let $M$ be an $E C_{11}$-module.
(i) If $X$ is a submodule of $M$ such that $e X \subseteq X$ for all $e^{2}=e \in \operatorname{End}\left(M_{R}\right)$, then $X$ is an $E C_{11}$-module. In particular, every fully invariant submodule of $M$ is an $E C_{11}$-module.
(ii) If $M$ has SIP, then every direct summand of $M$ has $E C_{11}$.

Proof. (i) Let $D$ be a direct summand of $M$ and $e: M \rightarrow D$ be the canonical projection. By Lemma 3.2, $X$ is an $E C_{11}$-module.
(ii) This part is an immediate consequence of Lemma 3.2.

Lemma 3.4. Let $M=M_{1} \oplus M_{2}$. Then $M_{1}$ satisfies $E C_{11}$ if and only if for every ec-submodule $N$ of $M_{1}$, there exists a direct summand $K$ of $M$ such that $M_{2} \subseteq K$, $K \cap N=0$ and $K \oplus N$ is an essential submodule of $M$.
Proof. Suppose $M_{1}$ satisfies $E C_{11}$. Let $N$ be any ec-submodule of $M_{1}$. By Proposition 2.2, there exists a direct summand $L$ of $M_{1}$ such that $N \cap L=0$ and $N \oplus L$ is essential in $M_{1}$. Clearly, $\left(L \oplus M_{2}\right) \cap N=0$ and $\left(L \oplus M_{2} \oplus N\right)$ is essential in $M$. Conversely, suppose $M_{1}$ has the stated property. Let $H$ be an ec-submodule of $M_{1}$. By hypothesis, there exists a direct summand $K$ of $M$ such that $M_{2} \subseteq K, K \cap H=0$ and $K \oplus H$ is an essential submodule of $M$. Now $K=K \cap\left(M_{1} \oplus M_{2}\right)=\left(K \cap M_{1}\right) \oplus M_{2}$ so that $K \cap M_{1}$ is a direct summand of $M$, and hence also of $M_{1}, H \cap\left(K \cap M_{1}\right)=0$, and $H \oplus\left(K \cap M_{1}\right)=M_{1} \cap(H \oplus K)$ which is an essential submodule of $M_{1}$. By Proposition 2.2, $M_{1}$ satisfies $E C_{11}$.

Theorem 3.5. Let $M=M_{1} \oplus M_{2}$ be an $E C_{11}$-module such that for every ecsubmodule $K$ of $M$ with $K \cap M_{2}=0, K \oplus M_{2}$ is a direct summand of $M$. Then $M_{1}$ is an $E C_{11}$-module. In this case $M_{1}$ is a $P$-extending module.
Proof. By Lemma 3.4, $M_{1}$ is an $E C_{11}$-module. For the second part, let $K$ be an ec-submodule of $M_{1}$. Hence $K$ is an ec-submodule of $M$ with $K \cap M_{2}=0$. By hypothesis, $K \oplus M_{2}$ is a direct summand of $M$. Therefore $K$ is a direct summand of $M$ and hence also of $M_{1}$. It follows that $M_{1}$ is a P-extending module.

Theorem 3.6. Let $M$ be an $E C_{11}$-module. If SocM is cyclic then $M=M_{1} \oplus M_{2}$ where $M_{1}$ is a submodule of $M$ with essential socle and $M_{2}$ a submodule of $M$ with zero socle.
Proof. Let $S$ denote the socle of $M$. By hypothesis, there exist submodules $M_{1}$ and $M_{2}$ of $M$ such that $M=M_{1} \oplus M_{2}, S \cap M_{2}=0$ and $S \oplus M_{2}$ is an essential submodule of $M$. So $S=S o c M=S o c M_{1} \oplus S o c M_{2}$. Clearly $S o c M_{2}=0$ so that
$S \leq M_{1}$. Now $S \oplus M_{2}$ essential in $M$ implies $S$ essential in $M_{1}$. Thus we have the required decomposition.

It is clear that for a module $M S o c M$ is cyclic submodule if and only if it is an ec-submodule. Note that Theorem 3.6 holds true if we replace socle with any left exact preradical in the category of right $R$-modules. For the definition and basic properties of left exact preradicals, consult [13]. However, the converse of the Theorem 3.6 is not true, in general. We conclude with such a counterexample.

Exmaple 3.7. Let $S$ be a commutative domain, which is not a field, and whose Jacobson radical $J(S)=0$. Let $V$ be a faithful semisimple $S$-module. Note that, since $J(S)=0$, such a module exists and it has infinite Goldie dimension, because it should contain an infinite direct sum of pairwise non-isomorphic simple $S$-modules. Let $R=S(S, V)=\left\{\left[\begin{array}{cc}s & v \\ 0 & s\end{array}\right]: s \in S, v \in V\right\}$. Let $I$ be the ideal of $R$, $I=S(0, V)=\left\{\left[\begin{array}{ll}0 & v \\ 0 & 0\end{array}\right]: v \in V\right\}$. Since $V$ is faithful, $I$ is an essential ideal of $R$. Thus $R$ is a commutative ring with essential socle $I$. Let $M_{1}=R, M_{2}=R / I$ and $M=M_{1} \oplus M_{2}$. Note that $S o c M=I \oplus 0$ and $S o c M_{2}=0$. Now, let $N$ be any simple submodule of $M$. It is clear that $N$ is an ec-submodule of $M$. By [14, Lemma 3.1], there is no direct summand $L$ of $M$ such that $L \cap N=0$ and $L \oplus N$ is essential in $M$. Because this would imply that $L \oplus N$ contains $S o c M$, and [14, Lemma 3.2], combined with the fact that $S o c M$ is not simple, shows that this is impossible. It follows that $M$ is not an $E C_{11}$-module.

## References

[1] M. M. Ali, D. J. Smith, Pure submodules of multiplication modules, Beitrage zur Algebra und Geometrie, Vol. 45(2004), 61-74.
[2] F.W. Anderson, K.R. Fuller, Rings and Catogories of Modules, Springer-Verlag, New York, 1992.
[3] G.F. Birkenmeier, A. Tercan, When some complement of a submodule is a summand, Comm. Algebra, 35(2)(2007), 597-611.
[4] G.F. Birkenmeier, B.J. Müller, S.T. Rizvi, Modules in which every fully invariant submodule is essential in a direct summand, Comm. Algebra, 30(3)(2002), 1395-1415.
[5] G.F. Birkenmeier, J.Y. Kim, J.K. Park, When is the CS condition hereditary?, Comm. Algebra, 27(8)(1999), 3875-3885.
[6] C. Celep Yücel and A. Tercan, Modules whose ec-closed submodules are direct summand, Taiwanese J. Math., 13(2009), 1247-1256.
[7] N.V. Dung, D.V. Huynh, P.F. Smith, R. Wisbauer, Extending Modules, Longman Scientific and Technical, Harlow, Essex, England, 1994.
[8] Z. A. El-Bast, P. F. Smith, Multiplication modules, Comm. Algebra, 16(1988), 755779.
[9] M.A. Kamal, O.A. Elmnophy, On P-extending Modules, Acta. Math. Univ. Comenianae, 74 ,(2005), 279-286.
[10] T.Y. Lam, Lectures on Modules and Rings, Springer, New York, 1999.
[11] P.F. Smith, A. Tercan, Generalizations of CS-Modules, Comm. Algebra, 21(6)(1993), 1809-1847.
[12] P.F. Smith, A. Tercan, Direct summands of modules which satisfy $\left(C_{11}\right)$, Algebra Colloq., 11(2004), 231-237.
[13] B. Stenström, Rings of Quotients, Springer-Verlag, New York, 1975.
[14] F. Takıl, A. Tercan, Modules whose submodules essentially embedded in direct summands, Comm. Algebra, 37(2009), 460-469.
[15] G.V. Wilson, Modules with summand intersection property, Comm. Algebra, 14(1)(1986), 21-38.


[^0]:    * Corresponding Author.

    Received March 25, 2009; revised September 1, 2009; accepted October 27, 2009.
    2000 Mathematics Subject Classification: 16D50, 16D70.
    Key words and phrases: Extending module, ec-closed submodule, P-extending module, $C_{11}$-module, Multiplication module.

