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Abstract. In this paper, we construct some improvements of the Jarratt method for

solving non-linear equations. A new sixth-order method are developed and numerical

examples are given to support that the method obtained can compete with other sixth-

order iterative methods.

1. Introduction

A large number of problems in engineering, applied mathematics, economics
and also in the physical sciences are solved by finding the solution of nonlinear
equation f(x) = 0. We consider iterative methods to find a simple root x∗, i.e.,
f(x∗) = 0 and f ′(x∗) ̸= 0, of a nonlinear equation f(x) = 0 that uses f and f ′ but
not the higher derivatives of f .

The best known iterative method for the calculation of x∗ is Newton’s method
defined by

xn+1 = xn − f(xn)

f ′(xn)
.

where x0 is an initial approximation sufficiently close to x∗. This method is quadrat-
ically convergent [7].

To improve the local order of convergence, many modified methods have been
proposed. The Jarratt method [2] is given by

xn+1 = xn − Jf (xn)
f(xn)

f ′(xn)
,

where Jf (xn) =
3f ′(yn)+f ′(xn)
6f ′(yn)−2f ′(xn)

and yn = xn − 2
3

f(xn)
f ′(xn)

.

For the sequence {xn}∞0 generated by an iterative method, if there exist positive
constants λ and p such that

lim
n→∞

|xn+1 − x∗|
|xn − x∗|p

= λ
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then the method is said to converge to x∗ with the local order of convergence p or
we say that the method has the local order of convergence p [4]. When considering
a practical utility of any method, the study of its efficiency is needed. The efficiency
of a method may be measured by the efficiency index introduced by Ostrowski [7],
which is defined by

I = p
1
d ,

where p is the order of the method and d is the number of the function-evaluations
per step. The efficiency index of Newton’s method is 1.414.

A systematic treatment of iterative methods, both old and new, are provided in
[7, 8]. Many researchers developed modifications of Newton’s method or Newton-
like methods in a number of ways to improve the order of convergence of Newton’s
method at the expense of additional evaluations of functions and/or derivatives
mostly at the point iterated by the method. All these modifications are targeted at
increasing the local order of convergence with a view of increasing their efficiency
index.

Recently, some variants of Jarratt method with sixth-order convergence have
been developed in [3], [6] and [9], which improve the local order of convergence of
Jarratt method by an additional evaluation of the function. And we get some vari-
ants of Jarratt method with twelfth-order convergence in [5]. From a practical point
of view, it is interesting to improve the order of convergence of the known methods.
Motivated and inspired by the ongoing research with the iterative methods, in this
paper we are concerned with the iterative methods improving the Jarratt method,
and present a new interesting family of methods. By analysis of convergence we
prove that the local order of convergence of the proposed method is six, and by
illustration we demonstrate their performance in comparison with other methods of
the same order.

2. Iterative methods and convergence analysis

The Jarratt method which has fourth-order convergence, is given by

(1) xn+1 = xn − Jf (xn)
f(xn)

f ′(xn)
,

where Jf (xn) =
3f ′(yn)+f ′(xn)
6f ′(yn)−2f ′(xn)

and yn = xn − 2
3

f(xn)
f ′(xn)

. Wang et al. [9] improved

the Jarratt method as follows:

xn+1 = zn − f(zn)

f ′(zn)
,

where

zn = xn − Jf (xn)
f(xn)

f ′(xn)
.(2)
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Using approximation of f ′(zn) they obtained the new method

(3) xn+1 = zn − γf ′(xn) + (α+ β − γ)f ′(yn)

αf ′(xn) + βf ′(yn)

f(zn)

f ′(xn)
.

Now we improve the above method (3) by using the method of undetermined coef-
ficients. To get some approximation of f ′(zn) we set

(4) f ′(zn) ≃ f ′(xn)
αf ′(xn) + βf ′(yn) +Af(xn) +Bf(zn)

γf ′(xn) + (α+ β − γ)f ′(yn) + Cf(xn) +Df(zn)
.

Expand the terms f ′(zn), f
′(yn) and f(yn) about the point xn up to second deriva-

tives and collect terms. Then we get the system of equations for the unknowns
A, · · · , D by comparing the coefficients of the derivatives of f at xn.

δD = δB
γδ + (α+ β − γ)ϵ+ (α+ β − γ)δ + δ2D = βϵ

A+B = C +D
δC + δD = 0

(α+ β − γ)δϵ = 0,

where δ = zn − xn and ϵ = yn − xn. This system has the solution

A = C =
γδ − βϵ

δ2
, B = D = −γδ − βϵ

δ2
.

So we have the following iterative fomula

(5) xn+1 = zn − γδ2f ′(xn) + (γδ − βϵ)[f(xn)− f(zn)]

αδ2f ′(xn) + βδ2f ′(yn) + (γδ − βϵ)[f(xn)− f(zn)]

f(zn)

f ′(xn)
,

where γ = α+ β, and zn is defined by (2).

Theorem 2.1. Assume that the function f : D ⊂ R → R for an open interval D
has a simple root x∗ ∈ D. If f(x) is sufficiently smooth in the neighborhood of the
root x∗, then the family of method given by (5), for γ = α+ β, is of order six.

Proof. Using Taylor expansion and taking into account f(x∗) = 0, we have

(6) f(xn) = f ′(x∗)[en + c2e
2
n + c3e

3
n + c4e

4
n +O(e5n)],

where en = xn − x∗ and ck = 1
k!

f(k)(x∗)
f ′(x∗) , k = 2, 3, . . . . And so we get

(7) f ′(xn) = f ′(x∗)[1 + 2c2en + 3c3e
2
n + 4c4e

3
n +O(e4n)].

Dividing (6) by (7) gives us

(8)
f(xn)

f ′(xn)
= en − c2e

2
n + 2(c22 − c3)e

3
n + (7c2c3 − 4c32 − 3c4)e

4
n +O(e5n).
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Expanding f ′(yn) about x
∗, we have

f ′(yn)

= f ′(x∗)

[
1 +

2

3
c2en +

1

3
(4c22 + c3)e

2
n −

(
8

3
c32 − 4c2c3 −

4

27
c4

)
e3n +O(e4n)

]
.(9)

From (6), (7) and (9) we have

(10) Jf (xn)
f(xn)

f ′(xn)
= en −

(
c32 − c2c3 +

1

9
c4

)
e4n +O(e5n).

From (10) we get

(11) zn − x∗ =

(
c32 − c2c3 +

1

9
c4

)
e4n +O(e5n).

Expanding f(zn) about x∗, we have

(12) f(zn) = f ′(x∗)[(zn − x∗) +O((zn − x∗)2)].

Dividing (12) by (7) gives us

(13)
f(zn)

f ′(xn)
= [1− 2c2en + (4c22 − 3c3)e

2
n +O(e3n)][(zn − x∗) +O((zn − x∗)2)].

From the equations (1), (8), (9), (10) and (12) we have

γδ2f ′(xn) + (γδ − βϵ)[f(xn)− f(zn)](14)

= f ′(x∗){2
3
βe2n + γc2e

3
n +

(
2

3
βc22 +

(
2γ − 2

3
β

)
c3

)
e4n

+

[
−2βc32 +

10

3
βc2c3 +

(
3γ − 38

27
β

)
c4

]
e5n +O(e6n)}

and

αδ2f ′(xn) + βδ2f ′(yn) + (γδ − βϵ)[f(xn)− f(zn)](15)

= f ′(x∗)

{
2

3
βe2n +

(
γ − 4

3
β

)
c2e

3
n +

(
2βc22 +

(
2γ − 10

3
β

)
c3

)
e4n

+

[
−14

3
βc32 +

22

3
c2c3 +

(
3γ − 142

27
β

)
c4

]
e5n +O(e6n)

}
.

Dividing (14) by (15) gives us

γδ2f ′(xn) + (γδ − βϵ)[f(xn)− f(zn)]

αδ2f ′(xn) + βδ2f ′(yn) + (γδ − βϵ)[f(xn)− f(zn)]
(16)

= 1 + 2c2en +

[
4c3 +

(
2− 3γ

β

)
c22

]
e2n +O(e3n).
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From (11), (13) and (16), we have

en+1 = zn − x∗ − γδ2f ′(xn)+(γδ−βϵ)[f(xn)−f(zn)]
αδ2f ′(xn)+βδ2f ′(yn)+(γδ−βϵ)[f(xn)−f(zn)]

f(zn)
f ′(xn)

(17)

=
[(

3γ
β − 2

)
c22 − c3

] [
c32 − c2c3 +

1
9c4

]
e6n +O(e7n).

The equation (17) means that the family of method given by (5) is of sixth-
order. 2

3. Numerical Examples

We present some numerical test results for various iterative methods in the fol-
lowing tables. The following methods were compared: the Newton method (NM),
the Jarratt method (JM), the method of Kou et al. ([6]) (KM), the method of Wang
et al. ([9], α = 1 and β = −3) (WM), the method of Chun ([3]) (CM) and our new
proposed method (α = 1 and β = −10) (PM).

All computations were done using Mathematica Ver. 5.1 using 150 digit floating
point arithmetics (Digits:=150). We accept an approximate solution rather than
the exact root, depending on the precision (ϵ) of the computer. We use the following
stopping criteria for computer programs: |fk(xn+1)| < ϵ, and so, when the stopping
criterion is satisfied, xn+1 is taken as the exact root x∗ computed. We used ϵ =
10−150.

We used the following test functions and display the computed approximate
zero x∗.

f1(x) =
√
x− 1

x
− 3, x∗ = 9.63359556283269519240631270919081626

f2(x) = ex + x− 20, x∗ = 2.84243895378444706781658594015095007

f3(x) = lnx+
√
x− 5, x∗ = 8.30943269423157179534695568269206861

f4(x) = x3 − x2 − 1, x∗ = 1.46557123187676802665673122521993910

Table 1. f1, x0 = 1.0

n NM JM KM WM CM PM

0 1.60 6.63 6.63 17.83 6.63 5.48
1 0.50 1.02 0.22 7.28 1.02 6.09e-3
2 4.48e-2 1.84e-3 1.48e-8 0.68 1.87e-3 5.19e-18
3 3.60e-4 3.07e-14 1.82e-51 1.73e-6 7.50e-18 4.92e-108
4 2.32e-8 2.38e-57 0 8.78e-41 3.11e-104 0
5 9.67e-17 0 0 0
6 1.68e-33
7 5.04e-67
8 4.65e-134
9 0
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Table 2. f2, x0 = 0.0

n NM JM KM WM CM PM

0 13349.23 101.65 76.52 88.28 76.91 21.65
1 4907.05 5.24 8.79 1.85 8.22 1.27e-2
2 1801.71 2.58e-3 6.16e-4 1.53e-7 4.74e-4 8.63e-23
3 658.90 2.63e-16 1.54e-28 6.59e-50 3.58e-29 0
4 238.27 2.83e-68 0 0 0
5 83.41 0
6 26.61
7 6.51
8 0.76
9 1.45e-2
10 5.43e-6
11 7.67e-13
12 1.53e-26
13 6.08e-54
14 9.63e-109
15 0

Table 3. f3, x0 = 1.0

n NM JM KM WM CM PM

0 1.79 0.63 0.68 8.35e-2 0.64 5.64e-2
1 0.40 1.42e-4 2.28e-6 2.04e-12 1.78e-4 6.51e-13
2 2.28e-2 3.90e-19 4.69e-39 4.36e-76 4.00e-25 1.50e-78
3 7.50e-5 2.21e-77 0 0 0 0
4 8.12e-10 0
5 9.52e-20
6 1.31e-39
7 2.47e-79
8 0

The numerical results presented in the above tables show that the proposed
methods in this contribution have at least equal performance as compared with the
other methods of the same order. Thus, the new methods can compete with other
six-order methods in literature.
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Table 4. f4, x0 = 0.5

n NM JM KM WM CM PM

0 81.00 9.22 div 6.40 4.57 67.31
1 24.17 1.34 1.04 1.00 3.35
2 7.37 1.18 4.44 17807.87 0.43
3 2.44 1.22 1.14 6192.32 4.01e-6
4 1.10 1.32 46.87 2155.78 1.80e-36
5 0.82 1.84 1.80 750.55 0
6 0.77 67.67 2.26e-3 259.62
7 9.43e-2 5.60 2.45e-19 87.02
8 2.25e-3 1.00 4.05e-115 26.11
9 1.39e-6 135722.91 0 5.78
10 5.33e-13 10361.85 1.06
11 7.83e-26 790.39 8.21
12 1.69e-51 59.81 0.22
13 7.83e-103 4.15 8.66e-8
14 0 0.11 1.88e-46
15 1.67e-6 0
16 1.12e-25
17 2.28e-102
18 0

4. Conclusion

In this paper, we presented a new sixth-order family of methods for solving nonlinear
equations. We observed from numerical examples that the proposed method have
at least equal performance as compared with the other methods of the same order.
And the practical utility of our method is good, the above-mentioned sixth-order
methods requires two functions and three first derivative evaluations per iteration
to improve the order of convergence so that, the efficiency of our method measured
by the efficiency index, introduced by Ostrowski [7], is 1.431.
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