DOI QR코드

DOI QR Code

Herbicidal Effects and Crop Selectivity of Sorgoleone, a Sorghum Root Exudate under Greenhouse and Field Conditions

온실과 포장조건에서 수수 추출물 Sorgoleone의 제초활성 및 작물 선택성

  • 로미즈 우딘 (충남대학교 농업생명과학대학 응용식물학과) ;
  • 원옥재 (충남대학교 농업생명과학대학 응용식물학과) ;
  • 변종영 (충남대학교 농업생명과학대학 응용식물학과)
  • Received : 2010.11.09
  • Accepted : 2010.12.13
  • Published : 2010.12.30

Abstract

Weeds are known to cause enormous losses due to their interference in agro ecosystems. Because of environmental and human health concerns, worldwide efforts are being made to reduce the heavy reliance on synthetic herbicides that are used to control weeds. In this regard phytotoxicity of allelochemical sorgoleone, which is a major component of the hydrophobic root exudates of Sorghum bicolor was evaluated in different weed species and also its crop selectivity in greenhouse and field conditions. Sorgoleone strongly inhibited the growth of different weeds by pre-emergence and post-emergence applications both in greenhouse and field conditions. Post-emergence application of sorgoleone on 21-day-old weed seedlings had a greater inhibitory effect than the pre-emergence application. Again, broadleaf weed species were more susceptible than grass species to the application of sorgoleone at both stages of growth. Growth of broadleaf weed species was suppressed by greater than 80% for most of the weed species except a few species and among them the species Rumex japonicus and Galium spurium were completely suppressed at $200{\mu}g\;ml^{-1}$ sorgoleone. Like greenhouse trial, sorgoleone was more effective for broadleaf weed species followed by sedge and grass weed species in the field condition. The growth inhibition of weeds was slightly lower in field condition compared to greenhouse condition. The crop species like rice, barley, wheat, corn, perilla, tomato, soybean and Chinese cabbage were tolerant to sorgoleone while lettuce and cucumber were slightly susceptible to sorgoleone. Consequently, sorgoleone may be applied to control weeds in organic farms without affecting the growth of crop.

잡초는 농업생태계에서 경합에 의하여 막대한 피해를 입히며, 환경 및 인류의 부정적인 관심 때문에 잡초를 방제하기 위하여 사용되고 있는 합성 제초제에 대한 의존도를 줄이려는 노력이 전 세계적으로 이루어지고 있다. 이와 같은 관점에서 수수 추출물의 일종인 sorgoleone의 제초활성과 작물 선택성을 온실과 포장조건에서 검정하였다. Sorgoleone은 토양처리와 경엽처리에서 모두 높은 효과를 나타냈는데 화본과 잡초보다 광엽잡초에서 효과가 높았다. 온실조건에서 대부분 광엽잡초의 생장은 Sorgoleone $200\;{\mu}g\;ml^{-1}$에서 80%이상 억제되었고, 소리쟁이와 갈퀴덩굴은 완전히 고사되었다. 포장조건에서도 sorgoleone의 제초활성은 광엽잡초에 가장 우수하였고, 방동사니, 화본과 잡초 순이었다. 포장조건에서 잡초생장 억제정도는 전반적으로 온실조건보다 다소 낮은 경향이었다. 벼, 보리, 밀, 옥수수, 콩, 들깨, 토마토와 배추에서는 sorgoleone에 의한 생장억제는 거의 없었으나 상추와 오이는 생장이 억제되었다.

Keywords

References

  1. Alsaadawi, I. S., and F. E. Dayan. 2009. Potentials and prospects of sorghum allelopathy in agroeco-systems. Allelo. J. 24:255-270.
  2. Chang, M., D. H. Netzly, L .G. Butler and D. G. Lynn. 1986. Chemical regulation of distance: characterization of (he first natural host germination stimulant for Striga asiatica. J. Am. Chem. Soc. 108:7858-7860. https://doi.org/10.1021/ja00284a074
  3. Dayan, F. E., J. G. Romagni and S. O. Duke. 2000. Investigating the mode of action of natural phytotoxins. J. Chem. Ecol. 26:2079-2094. https://doi.org/10.1023/A:1005512331061
  4. Duke, S. O., F. E. Dayan, A. M. Rimando, K. K. Schrader, G. Aliotta, A. Oliva and J. G. Romagni. 2002. Chemicals from nature for weed management. Weed Sci. 50: 138-151. https://doi.org/10.1614/0043-1745(2002)050[0138:IPCFNF]2.0.CO;2
  5. Einhellig, F. A., and G. R. Leather. 1988. Potentials for exploiting allelopathy to enhance crop production. J. Chem. Ecol. 14:1829-1844. https://doi.org/10.1007/BF01013480
  6. Einhellig, F. A., and J. A. Rasmussen. 1989. Prior cropping with grain sorghum inhibits weeds. J. Chem. Ecol. 15:951-960. https://doi.org/10.1007/BF01015190
  7. Forney, D. R., C. L. Foy and D. D. Wolf. 1985. Weed suppression in no-fill alfalfa Medicago Saliva) by prior cropping with summer-annual forage grasses. Weed Sci. 33:490-497. https://doi.org/10.1017/S0043174500082710
  8. Hill, E. C., M. Ngouajio and M. G. Nair. 2007. Differential response of weeds and vegetable crops to aqueous extracts of hairy vetch and cowpea. Hort. Sci. 43:695-700.
  9. Hoffman, M. L., L. A. Weston, J. C. Snyder and E. E. Regnier. 1996. Allelopathic influence of germinating seeds and seedlings of cover crops on weed species. Weed Sci. 44:579-584.
  10. Inderjit and S. O. Duke. 2003. Ecophysiological aspects of allelopathy. Planta 217:529-539. https://doi.org/10.1007/s00425-003-1054-z
  11. Kagan, I. A., A. M. Rimando and F. E., Dayan. 2003. Chromatographic separation and in vitro activity of sorgoleone congeners from the roots of Sorghum bicolor. J. Agric. Food Chem. 51:7589-7595. https://doi.org/10.1021/jf034789j
  12. Lehle, F. R., and A. R. Putnam. 1983. Allelopathic potential of sorghum (Sorghum bicolor) : isolation of seed germination inhibitors. J. Chem. Ecol. 9:1223-1234. https://doi.org/10.1007/BF00982224
  13. Netzly, D. H., and L. G. Butler. 1986. Roots of sorghum exude hydrophobic droplets containing biologically active components. Crop Sci. 26:775-778. https://doi.org/10.2135/cropsci1986.0011183X002600040031x
  14. Netzly, D. H., J. L. Riopel, G. Ejeta and L. G. Butler. 1988. Germination stimulants of witchweed (Striga asiatica) from hydrophobic root exudate of sorghum (Sorghum bicolor). Weed Sci. 36:441-446.
  15. Nicollier, J. F., D. F. Pope and A. C. Thompson. 1983. Biological activity of dhurrin and other compounds from johnsongrass (Sorghum halepense). J. Agric. Food Chem. 31:744-748. https://doi.org/10.1021/jf00118a016
  16. Nimbal, C. I., J. F. Pedersen, C. N. Yerkes, L. A. Weston and S.C. Weller. 1996. Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. J. Agric. Food Chem. 44:1343-1347. https://doi.org/10.1021/jf950561n
  17. Panasiuk, O., D. D. Bills and G. R. Leather. 1986. Allelopathic influence of Sorghum bicolor on weeds during germination and early development of seedling. J. Chem. Ecol. 12:1533-1543. https://doi.org/10.1007/BF01012370
  18. Putnam, A. R., and J. DeFrank. 1983. Use of phytotoxic plant residues for selective weed control. Crop Prot. 2:173-181. https://doi.org/10.1016/0261-2194(83)90042-X
  19. Rimando, A. M., F. E. Dayan, M. A. Czamota, L. A. Weston and S.O. Duke. 1998. A new photo-system II electron transfer inhibitor from Sorghum bicolor. J. Nat. Prod. 61:927-930. https://doi.org/10.1021/np9800708
  20. Rimando, A. M., F. E. Dayan and J. C. Streibig. 2003. PSII inhibitory activity of resorcinolic lipids from Sorghum bicolor. J. Nat. Prod. 66:42-45. https://doi.org/10.1021/np0203842
  21. Uddin, M. R., and J. Y. Pyon. 2010. Herbicidal activity of rotation crop residues on weeds and selectivity to crops. Journal of Agricultural Science 37(1):1-6.
  22. Uddin, M. R., K. W. Park, Y. K. Kim, S. U. Park and J. Y. Pyon. 2010. Enhancing sorgoleone levels in grain sorghum root exudates. J. Chem. Ecol. 36:914-922. https://doi.org/10.1007/s10886-010-9829-8
  23. Uddin, M. R., Y. K. Kim, S. U. Park and J. Y. Pyon. 2009. Herbicidal activity of sorgoleone from grain sorghum root exudates and its contents among sorghum cultivats. Kor. J. Weed Sci. 29:229-236.
  24. Weir, T. L., S. W. Park and J. M. Vivanco. 2004. Biochemical and physiological mechanisms mediated by allelochemicals. Curr. Opin. Plant Biol. 7:472-479. https://doi.org/10.1016/j.pbi.2004.05.007
  25. Weston, L. A., R. Harmon and S. Mueller. 1989. Allelopathic potential of sorghum-sudangrass hybrid (Sudex). J. Chem. Ecol. 15:1855-1865. https://doi.org/10.1007/BF01012272
  26. Weston, L. A. 1996. Utilization of allelopathy for weed management in agroecosystems. Agron. J. 88:860-866. https://doi.org/10.2134/agronj1996.00021962003600060004x
  27. Xuan, T. D., T. Shinkichi, T. D. Khanh and C. I. Min. 2005. Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: an overview. Crop Prot. 24:197-206. https://doi.org/10.1016/j.cropro.2004.08.004

Cited by

  1. Herbicidal Activity of d-Limonene to Burcucumber (Sciyos angulatus L.) with Potential as Natural Herbicide vol.32, pp.3, 2012, https://doi.org/10.5660/KJWS.2012.32.3.263
  2. Herbicidal activity of formulated sorgoleone, a natural product of sorghum root exudate vol.70, pp.2, 2014, https://doi.org/10.1002/ps.3550
  3. Herbicidal Properties of 5,8-dihydroxy-1,4-naphthoquinone and Their Possible Mode of Action vol.31, pp.3, 2011, https://doi.org/10.5660/KJWS.2011.31.3.250