DOI QR코드

DOI QR Code

Common Ragweed-Derived Phenolic Compounds and Their Effects on Germination and Seedling Growth of Weed Species

돼지풀의 페놀화합물 동정 및 이들 화합물이 잡초의 유식물 생장에 미치는 영향

  • 최봉수 (농촌진흥청 국립식량과학원) ;
  • 송득영 (농촌진흥청 국립식량과학원) ;
  • 성좌경 (농촌진흥청 국립농업과학원) ;
  • 김충국 (농촌진흥청 국립식량과학원) ;
  • 송범헌 (충북대학교 식물자원학과) ;
  • 우선희 (충북대학교 식물자원학과) ;
  • 이철원 (충북대학교 식물자원학과)
  • Received : 2010.09.10
  • Accepted : 2010.11.04
  • Published : 2010.12.30

Abstract

Phenolic compounds, which are products of secondary metabolism, have been demonstrated to be widespread growth substances in plants. The objectives of this study were to identify the phenolic compounds in common ragweed (Ambrosia artemisiifolia var. elatior) by HPLC and to evaluate their effects on germination and seedling growth of three weed species. Under controlled conditions in Petri dishes at $25^{\circ}C$, $10^{-3}$ and $10^{-4}$ M solutions of phenolic compounds were evaluated in seed germination tests. Four phenolic compounds (caffeic acid, O-coumaric acid, ${\rho}$-coumaric acid and ferulic acid) in common ragweed plant were identified and their concentration was increased from the stage before flowering through full flowering stage. Treatment of O- and ${\rho}$-coumaric acids delayed the seed germination of Digitalia ciliaris, while the treatment of caffeic acid delayed the seed germination of Echinochloa crus-galli. In time to 50% germination ($T_{50}$), phenolic compounds at $10^{-4}$ M promoted in Cyperus microiria and E. crus-galli but the level of $10^{-3}$ M delayed the $T_{50}$ of those weeds. The O-coumaric acid inhibited seed germination and seedling growth of the tested weeds and especially it perfectly inhibited the root growth of E. crus-galli.

외래잡초인 돼지풀은 국내 확산이 우려되는 문제잡초로서 allelopathy와 관련성을 평가하기 위하여 돼지풀이 함유하고 있는 phenolic compounds의 시기별 변화와 이들 화합물에 의한 3종 잡초의 발아 및 초기생육을 평가하였다. 식물의 생육을 억제하는 물질로 잘 알려진 cinnamic acid 유도체인 5종의 페놀화합물은 HPLC를 이용하여 정량분석하였고, 4종 (caffeic acid, O-coumaric acid, ${\rho}$-coumaric acid 및 ferulic acid)의 화합물을 동정하였다. 돼지풀에서 검출된 페놀화합물 중 caffeic acid의 농도가 가장 높았으며, O-와 ${\rho}$-coumaric acid는 개화직전 농도가 개화후기보다 3배 정도 높았다. 돼지풀이 함유하고 있는 페놀화합물의 총함량은 개화직전이 $1,377{\mu}g$으로 개화후기의 $1,583{\mu}g$보다 낮았으나 돼지풀이 생장률에 비해 증가량은 현저히 낮았다. 표준용액을 이용하여 농도별로 조제한 페놀화합물 중 O-와 ${\rho}$-coumaric acid는 바랭이의 발아를 지연시켰으며, caffeic acid는 피의 발아율을 대조구보다 10% 억제시켰다. 또한 발아가 50%에 도달하는 시점을 나타내는 $T_{50}$$10^{-4}M$ 페놀화합물 처리구의 금방동사니와 바랭이에서 촉진되었으며, $10^{-3}M$ 페놀화합물 처리구의 금방동사니와 피에서 현저히 지연되었다. 다양한 페놀화합물 중에서 O-coumaric acid는 3종의 모든 잡초에서 하배축과 유근의 신장을 현저히 억제시켰으며, 금방동사니의 뿌리 세포 분열을 억제시켰고, 특히 피의 발근을 100% 억제시켰다.

Keywords

References

  1. 유창연, 전인수, 정일민, 허장현, 김이훈. 1995. 잡초와 작물에 대한 알팔파 잔유물의 allelopathy 효과. 한국잡초학회지 15:131-140.
  2. 이영노. 2002. 원색 한국식물도감. 교학사. p. 782.
  3. 이호주, 김용옥, 장남기. 1997. 수종 식물의 분비물질이 종자 발아와 균류 생장에 미치는 알레로파시 효과. 한국생태학회지 20:181-189.
  4. 최봉수, 송득영, 김충국, 우선희, 송범헌, 이철원. 2010. 돼지풀이 작물과 잡초의 초기생장에 미치는 allelopathy 효과. 한국잡초학회지 30:34-42.
  5. 환경부. 1999. 환경백서. 남형문화(주). pp. 272-2774.
  6. Beres, I., G. Kazinczi and S. S. Narwal. 2002. Allelopathic plants. 4. Common ragweed (Ambrosia elatior L. Syn A. artemisiifolia). Allelopath. J. 9:27-34.
  7. Bridges, D. C. 1992. Crop losses due to weeds in the United Stales. Weed Science Society of America, Champaign, IL., USA. pp. 1-30.
  8. Bruckner, D. J. 1998. The allelopathic effect of ragweed (Ambrosia artemisiifolia L.) on the germination of cultivated plants. Novenytermeles 47:635-644.
  9. Canals, R. M., L. S. Emeterio and J. Peralta. 2005. Autotoxicity in Lolium rigidun : analyzing the role of chemically mediated interactions in annual plant populations. J . Theor. Biol. 235:402-407. https://doi.org/10.1016/j.jtbi.2005.01.020
  10. Chon, S. U., S. K. Choi, S. Jung, H. G. Jang, B. S. Pyo and S. M. Kim. 2002. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. Crop Prot. 21:1077-1082. https://doi.org/10.1016/S0261-2194(02)00092-3
  11. Chung. I. M., and D. A. Miller. 1995. Natural herbicide potential of alfalfa residues on selected weed species. Agron. J. 87:920-925. https://doi.org/10.2134/agronj1995.00021962008700050024x
  12. Fischer, N. H. 1991. Plant terpenoids as allelopathic agents. In Harbome, J. B. and F. A. Thmas-Barberan (eds), Ecological chemistry and biochemistry of plant terpenoids. Clarendon Press, Oxford. pp. 377-398.
  13. Gergen, P. J., P. C. Turkeltaub and M. G. Kovar. 1987. The prevalence of allergic skin test reactivity to eight common aeroallergens in the U.S. population : results form the second national health and nntrition examination survey. J. Allergy Clin. Immunol. 80:669-679. https://doi.org/10.1016/0091-6749(87)90286-7
  14. Hagerman. A. E., and R. L. Nicholson. 1982. High-performance liquid chromatographic determination of hydroxycinncmic acids in the maize mesocotyl. J. Agric. Food Chem. 30:1098-1102. https://doi.org/10.1021/jf00114a023
  15. Hall, M. H., and P. R. Henderlong. 1989. Alfalfa autotoxic fraction characterization and initial separation. Crop Sci. 29:425-428. https://doi.org/10.2135/cropsci1989.0011183X002900020038x
  16. Inderjit, K. M., and M. Dakshini. 1992. Interference potential of Pluched lanceolata (Asteraceae) : Growth and physiological responses of asparagus bean, Vigna unguiculata var. sesquipendalis. Am. J. Bot. 79:979-981.
  17. Leather, G. R., and F. A. Einhellig. 1988. Bioassay of naturally occurring allelochemicals for toxicity. J. Chem. Ecol. 14:1821-1828. https://doi.org/10.1007/BF01013479
  18. Li, H. H., M. Urashima, M. Amano, L. Lajide, H. Nishimura, K. Hasegawa and J. Mizutani. 1992. Allelopathy of barnyard grass (Echinochloa crusgalli L. Beauv. var. crus-galli). Weed Res. 37:151-157.
  19. Li, H. H., M. Inoue, H. Nishimura, J. Mizutani and E. Tsuzuki. 1993. Interactions of trans-cinnamic acid, its related phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce. J. Chem. Ecolo. 19:1775-1787. https://doi.org/10.1007/BF00982307
  20. Lodhi, M. A. K. 1976. Kolo of allelopathy as expressed by dominating tree in a low land forest in controlling the productivity and pattern of herbaceous growth. Am. J. Bot. 63:1-8. https://doi.org/10.2307/2441664
  21. Miller, D. A. 1996. Allelopathy in forage crop systems. Agron. J. 88:854-859. https://doi.org/10.2134/agronj1996.00021962003600060003x
  22. Putnam, A. R., and C. S. Tang. 1986. Allelopathy : state of the science. In : The science of allelopathy (ed. by Putnam, A. R. and C. S. Tang). John Wiley and Sons, New York, pp. 1-19.
  23. Rashid, M. H., T. Asaeda and N. Uddin. 2010. The allelopathic potential of kudzu (Pueraria montana). Weed Sci. 58:47-55. https://doi.org/10.1614/WS-09-106.1
  24. Rice, E. L. 1984. Allelopathy. 2nd ed. Academic Press. New York.
  25. Shipley, B., and M. Parent. 1991. Germination responses of 64 wetland species in relation to seed size, minimum time 10 reproduction and seedling relative growth rate. Funct. Ecol. 5:111-118. https://doi.org/10.2307/2389561