DOI QR코드

DOI QR Code

Germination and Seedling Emergence of Ammannia coccinea as Influenced by Environmental Factors

  • Shen, Xiangri (Department of Crop Science, Chungnam National University) ;
  • Pyon, Jong-Yeong (Department of Crop Science, Chungnam National University) ;
  • Kim, Do-Soon (Department of Plant Science, Seoul National University)
  • 투고 : 2010.06.07
  • 심사 : 2010.06.24
  • 발행 : 2010.06.30

초록

다양한 환경조건에서 미국좀부처꽃의 발아 및 출아 특성을 평가하기 위하여 식물생장상에서 페트리 디쉬와 포트 실험을 수행하였다. 미국좀부처꽃은 $35/30^{\circ}C$와 0 bar의 삼투포텐셜 조건에서 발아가 가장 잘되었으나 온도가 $15^{\circ}C$ 이하나 $40^{\circ}C$ 이상, 삼투포텐셜이 -2.0 bar 이하와 암조건에서 발아되지 않았다. 출아의 최적온도는 $35/30^{\circ}C$로 판단되며 이 조건에서 파종 후 7일차에 출아가 개시되어 10일차에 최대 출아율에 도달하였으며, 온도가 $15/10^{\circ}C$ 이하나 $40/35^{\circ}C$ 이상 조건에서는 출아가 안 되거나 현저히 감소하였다. 파종심도의 증가에 따라 출아율은 현저히 감소하여 3 cm 이상의 파종심도에서는 출아하지 않았다. 비선형회귀분석을 한 결과 파종 후 시간의 경과에 따른 미국좀부처꽃의 누적 발아 및 출아는 Gompertz 모델로 잘 설명되었으며 삼투포텐셜에 따른 발아와 파종심도에 따른 출아는 logistic 모델로 잘 설명되었다. 결론적으로 미국좀부처꽃은 광발아성으로 발아 및 출아 가능 온도는 $15^{\circ}C$ 이상, 삼투포텐셜은 -2.0bar 이상, 토양심도는 3 cm 이하임을 본 연구를 통하여 확인하였다.

Petri dish and pot experiments were conducted to investigate germination and seedling emergence of Ammannia coccinea as influenced by environmental factors. The best germination of A. coccinea was obtained at $35/30^{\circ}C$ of temperature and 0 bar of osmotic potential, while no germination at temperatures of ${\leq}$ $15^{\circ}C$ and ${\geq}$ $40^{\circ}C$, osmotic potentials of ${\leq}$ -2.0 bar, or dark condition. The best seedling emergence was observed at $35/30^{\circ}C$, at which the first emergence of A. coccinea was observed at 7 days after sowing (DAS) with its maximum emergence reached at 10 DAS. No seedling emergence was observed at $15/10^{\circ}C$ with significant reduction at $40/35^{\circ}C$. Seedling emergence decreased with increasing soil depth, resulting in no seedling emergence at ${\geq}$ 3 cm. The Gompertz model well described the cumulative germination and seedling emergence of A. coccinea with time. Germination influenced by osmotic potential and seedling emergence influenced by soil burial depth were well described by the logistic model. Overall results indicate that A. coccinea is photoblastic and requires temperatures greater than $15^{\circ}C$, osmotic potential greater than -2.0 bar, and soil burial depth shallower than 3 cm for its germination and seedling emergence, which were faster than M. vaginalis but slower than E. crus-galli.

키워드

참고문헌

  1. Baskerville, G. L., and D. Emin. 1969. Rapid estimation of heat accumulation from maximum and minimum temperature. Ecol. 50:514-517. https://doi.org/10.2307/1933912
  2. Chiang, Y. J., and M. Y. Chiang. 2004. Influence of temperature regimes and butachlor on the emergence and seedling growth of eight paddy weeds. Plant Prot. Bull. 46:345-356.
  3. Cussans, G. W., S. Radonius, P. Brain and S. Cumbenworth. 1996. Effects of depth of burial and soil aggregate of Alopecurus myosuroides, Galium aparine, Stelaria media and wheat. Weed Res. 36:133-141. https://doi.org/10.1111/j.1365-3180.1996.tb01809.x
  4. Ekeleme, F., F. Forcella, D. W. Archer, D. Chikoye and I. O. Akobundu. 2004. Simulation of shoot emergence pattern of congograss (Imperata cylindrica) in the humid tropics. Weed Sci. 52: 961-967. https://doi.org/10.1614/WS-03-146R1
  5. Genstat 5 Committee. 1997. Genstat 5 Release 4. 1 : Reference Manual Supplement to Genstat 5 Committee (1993) Geostat 5 Reference Manual Release 3. Oxford, UK : Numerical Algorithms Group.
  6. Gompertz, B. 1825. On the nature of the functions expressive of the law of human mortality, and on a new mode of determining me value of life contingencies. Philos. Trans. 115:513-585. https://doi.org/10.1098/rstl.1825.0026
  7. Graham, S. A., and T. B. Cavalcanti. 2001. New chromosome counts in the Lythraceae and a review of chromosome numbers in me family. System Bot. 26:445-458. https://doi.org/10.1098/rstl.1825.0026
  8. Hanna, J. 1989. Purple invader. Seasons 29:20-22, 36.
  9. Hight, S. D., and J. Drea. 1991. Prospects for a classical biological control project against purple loosestrife. Nat. Areas J. 11:151-157.
  10. Kim, D. S., P. Brain. E. J. P. Marshall and J. C. Caseley. 2002. Modelling herbicide dose and weed density effects on crop : weed competition. Weed Res. 42:1-13. https://doi.org/10.1046/j.1365-3180.2002.00253.x
  11. Kim, D. S., Y. W. Kwon and B. W. Lee. 2006a. Mathematical description of seedling emergence of rice and Echinochloa species as influenced by soil burial depth. Kor. J. Crop Sci. 51: 362-368. https://doi.org/10.1046/j.1365-3180.2002.00253.x
  12. Kim, D. S., E. J. P. Marshall, J. C. Caseley and P. Brain. 2006b. Modelling interactions between herbicide and nitrogen fertilizer in tenns of weed response. Weed Res. 46:480-491. https://doi.org/10.1111/j.1365-3180.2006.00531.x
  13. Michel, B. E., and M. R. Kaufmann. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51:914-916. https://doi.org/10.1104/pp.51.5.914
  14. Nakayama, S., and M. Takabayashi. 1987. Germination characteristics of two paddy weed species of Ammannia genus. Weed Res. Jpn. 32(Suppl): 195-196. https://doi.org/10.1104/pp.51.5.914
  15. NIER. 2001. Ammannia coccinea Rottb. In : An illustrated internet guide to alien plants in Korea. National Institute of Environmental Research. Inchon. Korea.
  16. Panigrahi, S. G. 1980. Contribution of anatomy to the systematics of Ammannia. Phytomorphol. 30, 320-330.
  17. Prostko, E. P., H. I. Wu, J. M. Chandler and S. A. Senseman. 1997. Modeling weed emergence as influenced by burial depth using the Fermi-Dirac distribution function. Weed Sci. 45:242-248.
  18. RDA. 2005. Ammannia coccinea Roub. In : Exotic weed. National Institute of Agriculrural Science and Technology, Rural Development Administration, Suwon, Korea.
  19. Shen, X. R., S. W. Oh, H. R. Ryu and J. Y. Pyon. 2003. Germination and emergence of Ammannia multiflora Roxb. and its competition with rice. Kor. J. Weed Sci. 23(Suppl):267-276.
  20. Shibayama, H. 2001 . Weeds and weed management in rice production. Weed Biol. Manag. 1:53-60. https://doi.org/10.1046/j.1445-6664.2001.00004.x
  21. Streibig, J. C. 1980. Models for curve fitting herbicide dose response data. Acta Agric. Scan. 30, 59-64. https://doi.org/10.1080/00015128009435696