DOI QR코드

DOI QR Code

Nanocellulose를 이용한 나노복합재의 최근 연구 동향

Current Research on Nanocellulose-Reinforced Nanocomposites

  • 조미정 (경북대학교 농업생명과학대학 임산공학과) ;
  • 박병대 (경북대학교 농업생명과학대학 임산공학과)
  • Cho, Mi-Jung (Department of Wood Science and Technology, Kyungpook National University) ;
  • Park, Byung-Dae (Department of Wood Science and Technology, Kyungpook National University)
  • 투고 : 2010.06.07
  • 발행 : 2010.11.25

초록

본 총설은 나노셀룰로오스의 원료의 종류, 단리방법과 나노셀룰로오스의 특성 그리고 이를 바탕으로 한 나노복합재의 최근 연구동향을 검토하였다. 나노셀룰로오스를 얻는 원료는 목질자원 및 미생물셀룰로오스 등을 포함하여 다양한 자원이 이용되고 있다. 또 나노셀룰로오스의 단리방법은 물리적, 기계적 및 화학적 방법들이 사용되고 있으며 이들 단리방법에 따라 나노셀룰로오스의 특성은 달랐다. 나노셀룰로오스의 길이와 폭은 사용된 원료 종류와 단리방법에 따라 크게 영향을 받지만 길이는 약 100~300 nm이며 폭은 5~50 nm로 다양하였다. 나노복합재의 제조에는 대부분 수용성 고분자들이 기질로 사용되었으며 2~10%의 나노셀룰로오스로 강화된 나노복합재의 인장강도와 저장탄성계수(E')는 크게 향상되는 경향을 보였다. 소수성 고분자에 사용될 경우 나노셀룰로 오스의 표면을 변화(modification) 시키는 다양한 방법들이 소개되었다. 나노셀룰로오스를 바탕으로 한 나노복합재의 응용은 다양하게 보고되었으나 적합한 응용분야에 대한 연구가 필요하다. 특히 나노셀룰로오스의 이용 확대를 위해서는 목질자원으로부터 나노셀룰로오스를 상업적으로 대량으로 제조할 수 있는 연구와 기술개발이 향후에 필요하다.

This review attempted to overview characteristics of nanocellulose from various sources, its isolation methods, and properties of nanocellulose-based nanocomposites. Currently, nanocelluloses could be obtained from a variety of cellulose sources, including wood pulp, tunicate, bacterial cellulose etc., and are isolated by various ways such as chemical, physical, or biological methods. The length and width of nanocellulose is in the range of 100~300 nm long and 5~50 nm wide although characteristics of nanocellulose shows a wide variability, depending on sources and isolation method. Nanocellulose is also being used as a reinforcement in the nanocomposites via various methods. Many water soluble polymers were reinforced by the incorporation of nanocellulose, which significantly improves tensile and storage moduli of the nanocomposites. In order to be used for hydrophobic polymers, the surface of nanocellulose was modified. Even though there is a significant progress in the utilization of nanocellulose as a reinforcement of polymers, further research is required to find a niche market of nanocellulose-reinforced nanocomposites. In addition, isolation methods of producing the nanocellulose in a large quantity for commercial applications should be developed to extend the application of nanocellulose-based bio-nanocomposites in future.

키워드

참고문헌

  1. Kobayashi, N. 2005. 나노테크놀로지. 김광남 역, 광문각, 서울 pp. 147-149.
  2. Okada, A., M. Kawasumi, A Usuki, Y. Kojima, T. Kurauchi, and O. Kamigaito. in Proceedings of Polymer based molecular composites, MRS symposium. Schaefer D.W. and Mark J.E. Ed., pp45-50, Pittsburgh, USA (1990).
  3. Ranby, B. G. 1952. Tappi 35: 53-58.
  4. Marchessault, R. H., F. F. Morehead, and N. M. Walter. 1959. Nature. 184: 632-633. https://doi.org/10.1038/184632a0
  5. Favier, V., G. R. Canova, J. Y. Givaille. H. Chanzy. A. Dufresne, and C. Gauthier. 1995. Polym. Adv. Technol. 6: 351-355. https://doi.org/10.1002/pat.1995.220060514
  6. Renneckar, S., A. Zink-Sharp, A. R. Esker. R. K. Johnson, and W. G. Glasser. 2006. Cellulose Nanocomposites: processing, characterization and properties, Oksman K., Sain M. Ed., ACS Symposium Series 938, Washington, DC. pp 78-96.
  7. Nickerson, R. F. and J. A. Habrle. 1947. J. Ind. Eng. Chem., 39(11): 1507-1512. https://doi.org/10.1021/ie50455a024
  8. Araki, J., M. Wada, S. Kuga, and T. Okano. 1998. Colloid and Surfaces A 142: 75-82. https://doi.org/10.1016/S0927-7757(98)00404-X
  9. Hon, D. N.-S. and S. Nobuo. 1991. Wood and Cellulosic Chemistry. Marcel Dekker Inc., New York pp 997-1031.
  10. Bondeson, D., A. Mathew, and K. Oksman. 2009. Cellulose 13: 171-180.
  11. Yao, C. S. 1999. J. Chem. Ing. 7: 47-55.
  12. Bai, W., J. Holbery, and K. Li. 2009. Cellulose 16: 455-465. https://doi.org/10.1007/s10570-009-9277-1
  13. Petersson, L., A. P. Mathew, and K. Oksman. 2009. J. Appl. Polym. Sci. 112: 2001-2009. https://doi.org/10.1002/app.29661
  14. Helbert, W., J. Y. Cavaille, and A. Dufresne. 1996. Polymer Composites 17(4): 604-611. https://doi.org/10.1002/pc.10650
  15. Dong, X. M., J. F. Revol, and D. G. Gray. 1998. Cellulose 5: 19-32. https://doi.org/10.1023/A:1009260511939
  16. Li, R., J. Fei, Y. Cai, Y. Li, J. Feng, and J. Yao. 2009. Carbohydrate Polymers 76: 94-99. https://doi.org/10.1016/j.carbpol.2008.09.034
  17. Wang, S. and Q. Cheng. 2009. J. Appl. Polym. Sci. 113: 1270-1275. https://doi.org/10.1002/app.30072
  18. Cheng, Q., S. Wang, and T. G. Rials. 2009. Composites: Part A 40: 218-224.
  19. Herrick, F. W., R. L. Casebier, J. K. Hamilton, and K. R. Sandberg. 1983. J. Appl. Polym. Sci.: Appl. Polymer Symp. 37: 797-813.
  20. Zimmermann, T., E. Pohler, and T. Geiger. 2004. Adv. Eng. Mater 6(9): 754-761. https://doi.org/10.1002/adem.200400097
  21. Taniguchi, T. and K. Okamura. 1998. Polym. Int. 47: 291-294. https://doi.org/10.1002/(SICI)1097-0126(199811)47:3<291::AID-PI11>3.0.CO;2-1
  22. Iwamoto, S., A. N. Nakagaito, H. Yano, and M. Nogi. 2005. Appl. Phys. A 81: 1109-1112. https://doi.org/10.1007/s00339-005-3316-z
  23. Wang, B. and M. Sain. 2006. Cellulose Nanocomposites: processing, characterization and properties, Oksman K., Sain M. Ed., ACS Symposium Series 938, Washington, DC pp 187-208.
  24. Sain, M. and A. Bhatnagar. 2003. Ginadian Patent Pending 2003, Application No.2,437,616.
  25. Sain, M. and A. Bhatnagar. US Patent Pending, Application No.60/512,912.
  26. Bhatnagar, A. and M. Sain. 2005. Journal of Reinforced Plastics and Composites 24(12): 1259-1268. https://doi.org/10.1177/0731684405049864
  27. Henriksson, M., G. Henriksson, L. A. Berglund, and T. Lindstrom. 2007. European Polymer Journal 43: 3434-3441. https://doi.org/10.1016/j.eurpolymj.2007.05.038
  28. Hayashi. N., T. Kondo, and M. Ishihara. 2005. Carbohydr. Polym 61: 191-197. https://doi.org/10.1016/j.carbpol.2005.04.018
  29. Azizi Samir, M. A. S., L. Chazeau, F. Alloin, J.-Y. Cavaille, A. Dufresne, and J.-Y. Sanchez. 2005. Electrochimica Acta 50: 3897-3903. https://doi.org/10.1016/j.electacta.2005.02.065
  30. Cho, M.-J. and B.-D. Park. 2010. J. Ind. Eng. Chem. In press.
  31. Kvien, I., B. S. Tanem, and K. Oksman. 2005. Biomacromolecules 6: 3160-3165. https://doi.org/10.1021/bm050479t
  32. Turbak, A. F. 1984. Tappi 67: 94-96.
  33. Potthast, A., T. Rosenau, J. Sartori, H. Sixta, and P. Kosma. 2003. Polymer 44: 7-17. https://doi.org/10.1016/S0032-3861(02)00751-6
  34. Oksman, K., A. P. Mathew, D. Bondeson, and I. Kvien. 2006. Compos. Sci. Tech. 66: 2776-2784. https://doi.org/10.1016/j.compscitech.2006.03.002
  35. Abe, K., S. Iwamoto, and H. Yano. 2007. Biomacromolecules, 8: 3276-3278. https://doi.org/10.1021/bm700624p
  36. Belton, P. S., S. F. Tanner, N. Cartier, and H. Chanzy. 1989. Marcromolecules 22: 1615-1617. https://doi.org/10.1021/ma00194a019
  37. Marchessault, R. H., F. F. Morehead, and M. Joan Koch. 1961. J. Colloid Sci. 16: 327-344. https://doi.org/10.1016/0095-8522(61)90033-2
  38. Favier, V., H. Chanzy, and J. Y. Cavaille. 1995. Macromolecules 28: 6365-6367. https://doi.org/10.1021/ma00122a053
  39. Ruiz, M. M., J. Y. Cavaille, A. Dufresne, C. Graillal, and J.-F. Gerard 2001. Macromolecules symposia 169: 211-222.
  40. Brown, R. M. Jr., J. H. M. Willison, and C. L. Richardson. 1976. Proc. Natl. Acad. Sci., pp. 4565-4569, U.S.A.
  41. Yamanaka, S., K. Wantanabe, N. Kitamura, M. Iguchi, S. Mitsuhashi, Y. Nishi, and M. Uryu. 1989. J. Mater. Sci. 24: 3141-3145. https://doi.org/10.1007/BF01139032
  42. Tahara, N., M. Tabuchi, K. Watanabe, H. Yano, Y. Morinaga, and F. Yoshinaga. 1997. Biosci. Biotech. Biochem. 61(11): 1862-1865. https://doi.org/10.1271/bbb.61.1862
  43. Iguchi, M., S. Yamanaka, and A Budhiono. 2000. J. Mater. Sci. 35: 261-270. https://doi.org/10.1023/A:1004775229149
  44. Fontana, J. D., A. M. de Souza, C. K. Fontana, I. L. Torriani, J. C. Moreschi, B. J. Gallotti, and S. J. de souza. 1990. et al. J, Appl. Biochem. Biotech. 24(25): 253-264. https://doi.org/10.1007/BF02920250
  45. Nakagaito, A. N., S. Iwamoto, and H. Yano. 2005. Appl. Phys. A 80. 93-97. https://doi.org/10.1007/s00339-004-2932-3
  46. Dammstrom, S., L. Salmen, and P. Gatenholm. 2005. Polymer 46: 10364-10371. https://doi.org/10.1016/j.polymer.2005.07.105
  47. Eichhorn, S. J., C. A Baillie. N. Zafeiropoulos, L. Y. Mwaikambo, and M. P. Ansell. 2001. et al. J. Mater. Sci. 36: 2107-2131. https://doi.org/10.1023/A:1017512029696
  48. Li, Y., Y.-W. Mai, and L. Ye. 2000. Comp. Sci. Tech. 60(11): 2037-2055. https://doi.org/10.1016/S0266-3538(00)00101-9
  49. de Rodriguez, N. L. G., W. Thielemans, and A. Dufresne. 2006. Cellulose 13: 261-270. https://doi.org/10.1007/s10570-005-9039-7
  50. Zuluaga, R., J.-L. Putaux, A. Restrepo, I. Mondragon, and P. Ganan. 2007. Cellulose 14: 585-592. https://doi.org/10.1007/s10570-007-9118-z
  51. Wang, B., M. Sain and K. Oksman. 2007. Appl. Compos. Mater. 14: 89-103. https://doi.org/10.1007/s10443-006-9032-9
  52. Dinand E., H. Chanzy, and M. R. Vignon. 1996. Cellulose 3:183-188. https://doi.org/10.1007/BF02228800
  53. Azizi Samir, M. A. S., F. Alloin, M. Paillet, and A. Dufresne. 2004. Macromolecules 37: 4313-4316. https://doi.org/10.1021/ma035939u
  54. Surcova, A., G. R. Davies, and S. J. Eichhorn 2005. Biomacromolecules 6(2): 1055-1061. https://doi.org/10.1021/bm049291k
  55. Azizi Samir, M. A. S., F. Alloin, J.- Y. Sanchez, N. E. Kissi, and A. Dufresne. 2004. Macromolecules 37: 1386-1393. https://doi.org/10.1021/ma030532a
  56. Wong S.-S., S. Kasapis, and T. Y. Mabelyn. 2009. Carbohydrate polym. 77: 280-287. https://doi.org/10.1016/j.carbpol.2008.12.038
  57. Tokoh, C., K. Takabe, M. Fujita, and H. Saiki. 1998. Cellulose 5: 249-261. https://doi.org/10.1023/A:1009211927183
  58. Grunert, M. and W. T. Winter. 2002. J. Polym. Environment 10: 27-30. https://doi.org/10.1023/A:1021065905986
  59. Revel, J.-F., H. Bradford, J. Giasson, R. H. Marchessault, and D. G. Gray. 1992. Int. J. Biol. Macromol. 14: 170-172. https://doi.org/10.1016/S0141-8130(05)80008-X
  60. Leitner, J., B. Hinterstoisser, M. Wastyn, J. Keckes, and W. Gindl. 2007. Cellulose 14: 419-425. https://doi.org/10.1007/s10570-007-9131-2
  61. Yamanaka, S., K. Watanabe, N. Kitamura, M. Iguchi, S. Mitshhashi, Y. Nishi, and M .Uryu. 1989. J. Mater. Sci., 24: 3141-3145. https://doi.org/10.1007/BF01139032
  62. Azizi Samir, M. A. S., F. Alloin, J.-Y. Sanchez, and A. Dufresne. 2004. Polymer 45: 4149-4157. https://doi.org/10.1016/j.polymer.2004.03.094
  63. Orts, W.J., J. Shey, S. H. Imam, G. M. Glenn, M. E. Guttman, and J.-F. Revol. 2005. J. Polym. the Environment 13(4): 301-306. https://doi.org/10.1007/s10924-005-5514-3
  64. Petersson, L. and K. Oksman. 2006. Comp. Sci. Tech. 66: 2187-2196. https://doi.org/10.1016/j.compscitech.2005.12.010
  65. Cheng Q., S. Wang, T. G. Rials, and S. H. Lee. 2007. Cellulose 14: 593-602. https://doi.org/10.1007/s10570-007-9141-0
  66. Lu, J., T. Wang, and L. T. Drzal. 2008. Composites Part A 39: 738-746. https://doi.org/10.1016/j.compositesa.2008.02.003
  67. Roohani, M., Y. Habibi, N. M. Belgacem, G. Ebrahim, A. N. Karimi, and A. Dufresne. 2008. European polymer Journal 44: 2489-2498. https://doi.org/10.1016/j.eurpolymj.2008.05.024
  68. Kevien, I. and K. Oksmaa. 2007. Appl. Phys. A 87: 641-643. https://doi.org/10.1007/s00339-007-3882-3
  69. Gandini, A. and M. N. Belgacem. 2005. Macromolecules symposia 221: 257-270. https://doi.org/10.1002/masy.200550326
  70. Gousse, C., H. Chanzy, G. Excoffier, L. Soubeyrand, and E. Fleury. 2002. Polymer, 43: 2645-2651. https://doi.org/10.1016/S0032-3861(02)00051-4
  71. Gousse, C., H. Chanzy, M. L. Cerrada, and E. Fleury. 2004. Polymer 45: 1569-1575. https://doi.org/10.1016/j.polymer.2003.12.028
  72. Spoljaric, S., A. Genovese, and R. A. Shanks. 2009. Composites: Part A 40: 791-799. https://doi.org/10.1016/j.compositesa.2009.03.011
  73. Lu, J., P. Askeland, and L. T. Drzal. 2008. Polymer, 49: 1285-1296. https://doi.org/10.1016/j.polymer.2008.01.028
  74. Ly, B., W. Thielemans. A. Dufresne, D. Chaussy, and M. N. Belgacem. 2008. Comp. Sci. Tech. 68: 3193-3201. https://doi.org/10.1016/j.compscitech.2008.07.018
  75. Nair, K. G. and A. Dufresne. 2003. Biomacromolecules 4: 1835-1842. https://doi.org/10.1021/bm030058g
  76. Siqueira, G., J. Bras, and A. Dufresne. 2009. Biomacromolecules 10: 425-432. https://doi.org/10.1021/bm801193d
  77. Kumar, A. P. and R. P. Singh, Biorcsour. 2008. Tech. 99: 8803-8809. https://doi.org/10.1016/j.biortech.2008.04.045
  78. Araki, J., M. Wada, and S. Kuga. 2001. Langmuir 17: 21-27. https://doi.org/10.1021/la001070m
  79. Wan, Y. Z., Y. Huang, C. D. Yuan, S. Raman, Y. Zhu, H. J. Jiang, and F. He. 2007. Mate. Sci. Eng. C 27: 855-864. https://doi.org/10.1016/j.msec.2006.10.002
  80. Alila, S., A. M. Ferraria, A. M. B. do Rego, and S. Boufi. 2009. Carbohydr. Polym. 77: 553-562. https://doi.org/10.1016/j.carbpol.2009.01.028
  81. Wieczorek, W., P. Lipka, G. Zukowska, and H. Wycislik. 1998. J. Phys. Chem. B 102: 6968-6974. https://doi.org/10.1021/jp981397k
  82. Wieczorek W., A. Zalewska, D. Raducha, and Z. Florjan. 1998. J. Phys. Chem. B 102: 352-360. https://doi.org/10.1021/jp972727o
  83. Croce, F., R. Curini, A. Martinelli, L. Persi, F. Ronci. B. Scrosati, and R. Caminiti. 1999. J. Phys. Chem. B 103: 10632-10638. https://doi.org/10.1021/jp992307u
  84. Best, A. S., K. Adelahr, P. Jacobsson, D. R. MacFarlane, and M. Forsyth. 2001. Macromolecules 34, 4549-4555. https://doi.org/10.1021/ma001837h
  85. Azizi Samir, M. A. S., F. Alloin, W. Gorecki, J.-Y. Sanchez, and A. Dufresne. 2004. J. Phys. Chem. B 108: 10845-10852. https://doi.org/10.1021/jp0494483
  86. Schroers, M., A. Kokil, and C. Weder. 2004. J. Appl. Polym. Sci. 93: 2883-2888. https://doi.org/10.1002/app.20870
  87. Noorani, S., J. Simonsen. and S. Atre. 2006. Cellulose Nanocomposites: processing, characterization and properties, Oksman K., Sain M. Ed, ACS Symposium Series 938, Washington, DC pp. 209-220.
  88. Aerts, P., I. Genne, S. Kuypers, R. Leysen, I. F. J. Vankelecom, and P. A Jacobs, 2000. J. Membr. Sci. 178: 1-11. https://doi.org/10.1016/S0376-7388(00)00428-2
  89. Noorani, S., J. Simonsen, and S. Atre. 2007. Cellulose 14: 577-584. https://doi.org/10.1007/s10570-007-9119-y

피인용 문헌

  1. Mechanical and Thermal Properties of Hydroxypropyl Cellulose/TEMPO-oxidized Cellulose Nanofibril Composite Films vol.43, pp.6, 2015, https://doi.org/10.5658/WOOD.2015.43.6.740
  2. Effect of pMDI as Coupling Agent on The Properties of Microfibrillated Cellulose-reinforced PBS Nanocomposite vol.42, pp.4, 2014, https://doi.org/10.5658/WOOD.2014.42.4.483
  3. Delignification Effect on Properties of Lignocellulose Nanofibers from Korean White Pine and Their Nanopapers vol.43, pp.1, 2015, https://doi.org/10.5658/WOOD.2015.43.1.9