DOI QR코드

DOI QR Code

Cellulase Production in the Digestive Organs of Reticulitermes speratus, a Native Termite from Milyang, Korea

  • Lee, Young-Min (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University) ;
  • Kim, Yoon-Hee (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University) ;
  • Cho, Moon-Jung (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University) ;
  • Shin, Keum (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University) ;
  • Kim, Yeong-Suk (Department of Forest Products and Biotechnology, College of Forest Science, Kookmin University)
  • Received : 2010.03.03
  • Accepted : 2010.03.17
  • Published : 2010.09.25

Abstract

This study investigated on enzyme production in the digestive organs of the native termite (Reticulitermes speratus) in Milyang, Korea. Four types of major cellulases [EG (endo-1,4-${\beta}$-glucanase), BGL (${\beta}$-glucosidase), CBH (cellobiohydrolase) and BXL (${\beta}$-1,4-xylosidase)] were present in the digestive organs of the termite. The strong enzyme activity for BGL was found from the native termite, and also shown that the enzyme was distributed in the salivary gland, foregut, and hindgut. BXL, which breaks down hemicellulose near the amorphous region, was detected mainly from salivary gland, foregut, and midgut. However, CBH was distributed mainly in the hindgut. Meanwhile, EG which degrades cellulose, was found mainly in the hindgut and salivary glands. These facts indicate that celluases production patterns are differ from different sites compare to the same species found in Japan, suggesting that enzyme production in the digestive organs of termites is changed according to their habitats.

Keywords

References

  1. Delmer D. P. and Y. Amor. 1995. Cellulose Biosynthesis. Plant Cell. 7: 987-1000. https://doi.org/10.1105/tpc.7.7.987
  2. Berghem, L. E. R., L. G. Pettersson, and U.-B. Axio-Fredriksson. 1976. Eur J. Biochem. 61: 621-630. https://doi.org/10.1111/j.1432-1033.1976.tb10058.x
  3. Eriksson, K.-E. 1975. in Symposium on Enzymatic Hydrolysis of Cellulose, Finnish National Fund for Research and Development, pp. 263-280, Helsinki.
  4. Wood, T. M. & S. and McCrae. 1978. Adv. Chcm. Ser. 181: 181-120.
  5. Cleveland, L. R. 1923. Symbiosis Between Termites and Their Intestinal Protozoa. Proc. Natl. Acad. Sci. USA., 9: 424-428. https://doi.org/10.1073/pnas.9.12.424
  6. Cleveland, L. R. 1924. The physiological and symbiotic relation ship between the intestinal protozoa of termites and their host with special reference to Reticulitermes flavipes Kollar. Biol. Bull. 46: 178-227. https://doi.org/10.2307/1536507
  7. Breznak, J. A. and A. Brune, 1994. Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 39: 453-487. https://doi.org/10.1146/annurev.en.39.010194.002321
  8. Hogan, M., P. C. Veivers, M. Slaytor, and R. T. Czolij. 1988a. The site of Cellulose Breakdown in Higher Termites (Nasutitermes walkeri and Nasutitermes exitiosus). J. Insect Physiol. 34: 891-899. https://doi.org/10.1016/0022-1910(88)90123-0
  9. O'Brien, G. W., P. C. Veivers, S. E. McEwen, M. Slaytor, and R. W. O'Brien. 1979. The Origin and Distribution of Cellulase in the Termites, Nasutitermes exitiosus and Coplotermes lacteus. Insect Biochem. 9: 619-625. https://doi.org/10.1016/0020-1790(79)90101-X
  10. Potts, R. C. and P. H. Hewitt. 1973. The distribution of intestinal bacteria and cellulase activity in the harvester termite, Trinervitermes tri-nervoides (Nasutitermitinae). Insects Soc. 20: 215-220. https://doi.org/10.1007/BF02223191
  11. Slaytor, M. 1992. Cellulose Digestion in Termites and Cockroaches: What role do Symbionts Play? Comp. Biochem. Physiol. 103B: 775-784.
  12. Yamaoka I. and Y. Nagatani. 1975. Cellulose digestion system in the termite, Reticulitermes speralus (Kolbe). I. Producing sites and physiological significance of two kinds of cellulase in the worker. Zool. Mag. 84: 23-29.
  13. Slaytor, M., P. C. Veivers, and N. Lo. 1997. Aerobic and Anaerobic Metabolism in the Higher Termite Nasutitermes walkeri (Hill). Insect Biochem. Mol. Biol. 27: 291-303. https://doi.org/10.1016/S0965-1748(97)00002-7
  14. Kovoor, J. 1970. Presence d'enzyme celluloly-tiques dans l'intestin d'um termite superieur Microcerotermes edentatus (Was.). Ann. Sci. Nat. Zool. 12: 65-71.
  15. Inoue, T., K. Murashima, J.-I. Azuma, A. Sugi-moto, and M. Slaytor. 1997. Cellulose and xylan utilization in the lower termite Reticulitermes speratus. J. Insect Physiol. 43: 235-242. https://doi.org/10.1016/S0022-1910(96)00097-2
  16. Zhou, X. G. and A. J. Smith. 2007. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Elsevier. Gene 395: 29-39.
  17. Park, H. C. and T. W. Bae. 1997. Morphological description of Reticulitermes speratus kyush-uenesis Morimoto (Isoptera : Rhinotermitidae) in Southern part of Korea, Korean J. Soil Zoology 2(1): 59-64
  18. Nelson, N. 1944. A photomeric adaption of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375-380.
  19. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  20. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680-685. https://doi.org/10.1038/227680a0
  21. Azuma, J. I. and T. Koshijima. 1984a. Enzymatic Saccharification of Wood Plants. Wood Research. 70: 17-24.
  22. Tokuda, G., H. Watanabe, T. Matsumoto, and H. Noda. 1997. Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): distribution of cellulose and properties of Endo-glucanase, G. Zool. Sci. 14: 83-93. https://doi.org/10.2108/zsj.14.83
  23. Veivers, P. C, R. Muhlemann, M. Slaytor, R. H. Leuthold and D. E. Bignell. 1991. Digestion, diet and polytheism in two fungus-growing termites: Macrotermes subhyalinum Rambur and M. michaelseni Sjostedt. J. Insect Physiol. 37: 675-682. https://doi.org/10.1016/0022-1910(91)90044-Z
  24. Mo, J. C, T. Yang, X. G. Song, and J. A. Cheng. 2004. Cellulase activity in five species of important termites in China. Appl. Entomol. Zool. 39(4): 635-641. https://doi.org/10.1303/aez.2004.635
  25. Tokuda, G., H. Saito, and H. Watanabe. 2002. A digestive B-GLucosidase from the salivary glands of the termite, Neolermes koshunensis (Shiraki) : distribution, characterization and isolation of its precursor cDNA by 5'- and 3'- RACE amplifications with degenerate primers. Insect Biochem. and Molccul. Biol. 32: 1681-1689. https://doi.org/10.1016/S0965-1748(02)00108-X
  26. Watanabe, H., M. Nakamura, G. Tokuda, I. Yamaoka, A. M. Scrivener, and H. Noda. 1997. Site of Secretion and Properties of Endogenous EG Components from R.S. (Kolbe), a Japanese Subterranean Termite. Insect Biochem. Molec. Biol. 27: 305-313. https://doi.org/10.1016/S0965-1748(97)00003-9
  27. Nakashima, K. and J. Azuma. 2000. Distribution and Properties of Endo-Glucanase from a Lower Termite, Coptotermes formosamis (Shiraki). Biosci. Biotechnol. Biochem. 64(7): 1500-1506. https://doi.org/10.1271/bbb.64.1500
  28. http://www.ncbi.nlm.nih.gov/