DOI QR코드

DOI QR Code

Factors Affecting Acer mono Sap Exudation : (II) Hamyang Region in Korea

고로쇠나무 수액의 출수에 미치는 영향 인자 분석 : (II) 함양 지역

  • Choi, Won-Sil (Division of Green Business Management, Department of Forest Resources Utilization, Korean Forest Research Institute) ;
  • Park, Mi-Jin (Division of Green Business Management, Department of Forest Resources Utilization, Korean Forest Research Institute) ;
  • Kim, Ho-Yong (Department of Forest Sciences, College of Agriculture & Life Sciences, Seoul National University) ;
  • Choi, In-Gyu (Department of Forest Sciences, College of Agriculture & Life Sciences, Seoul National University) ;
  • Lee, Hak-Ju (Division of Green Business Management, Department of Forest Resources Utilization, Korean Forest Research Institute) ;
  • Kang, Ha-Young (Division of Green Business Management, Department of Forest Resources Utilization, Korean Forest Research Institute)
  • 최원실 (국립산림과학원 녹색산업연구과) ;
  • 박미진 (국립산림과학원 녹색산업연구과) ;
  • 김호용 (서울대학교 산림과학부 환경재료과학) ;
  • 최인규 (서울대학교 산림과학부 환경재료과학) ;
  • 이학주 (국립산림과학원 녹색산업연구과) ;
  • 강하영 (국립산림과학원 녹색산업연구과)
  • Received : 2010.06.07
  • Accepted : 2010.06.11
  • Published : 2010.07.25

Abstract

This study was carried out to investigate the optimum condition for sap exudation of Acer mono Max. tree in a site of Mt. Jiri, Hamyang-gun, Korea. Amount of sap exudation, air temperature, relative air humidity, tree diameter at breast height (DBH) and sugar content in sap were monitored during the early springtime, and correlation analysis of several factors was carried out to explain tree-to-tree and date-to-date variations in sap exudation. The correlation, linearlyassociated between DBH and sap amount, was strengthened as daily amount of sap increased, but there was no significant tree-to-tree variation in time and period for sap exudation. When amount of sap exudation was above 10 liter/day, the mean air-temperature was averaged at $1.2{\pm}1.6^{\circ}C$, the minimum at $-4.3{\pm}1.5^{\circ}C$ and the maximum at $11.8{\pm}1.9^{\circ}C$. The maximum air temperature and mean air temperature were significant (p < 0.05) factors for amount of sap in correlation analysis to explain date-to-date variation in sap exudation. Sucrose content in sap was in the range of 1.5 and 1.7% during exudation days, but sharply reduced to 0.6% level at the end of exudation period.

본 연구는 경상남도 함양군 지리산의 고로쇠나무 수액의 출수와 영향 인자들을 분석하여 최적의 출수 조건을 얻는데 기여하고자, 출수량과 시험지의 기온 및 상대습도, 흉고직경 그리고 수액내 당 함량 사이의 상관성을 분석하였다. 고로쇠나무의 흉고직경에 비례하는 출수량과의 상관성은 출수량이 많은 날에 높았고 출수 일수와 시기는 공시목 사이에 큰 차이점이 없었다. 출수량이 높았던 날들의 기온은 일평균기온 $1.2{\pm}1.6^{\circ}C$, 일최저기온 $-4.3{\pm}1.5^{\circ}C$ 그리고 일최고기온 $11.8{\pm}1.9^{\circ}C$로 나타났다. 수액 출수는 기온이 영하의 온도를 지속하거나 영상의 온도를 지속할 경우에는 관찰되지 아니하였다. 기온과 출수량과의 상관 분석에서 일최고기온과 일평균기온이 유의적(p < 0.05)으로 관련성이 있는 것으로 나타났다. 수액의 출수 기간 동안 자당의 농도는 일정 수준을 유지 하였으나 출수가 종료되는 시점에서 급격하게 감소하였다.

Keywords

References

  1. 김철수, 곽애경. 1994a. 고로쇠나무의 수액출수에 미치는 환경요인과 그 군락의 자원화에 관한 연구 : 생육지 환 경과 군락의 구조. 한국생태학회지 17(3): 333-344.
  2. 김철수, 곽애경. 1994b. 고로쇠나무의 수액출수에 미치는 환경요인과 그 군락의 자원화에 관한 연구(2) : 환경요인 및 공시목의 회복. 한국생태학회지 17(4): 533-545.
  3. 김홍은, 권기철, 박철하, 조남석. 1998. 소백산지역의 수액 채취수종의 분포 및 수액채취량. 목재공학 26(3): 81-92.
  4. 박정호, 안종만, 강학모. 1999. 수액채취 생산활동이 농림업생산구조에 미치는 영향에 관한 연구. 산림경제연구 7(2): 65-75.
  5. 박형순, 송원도, 나천수. 1989. 백운산 지역 고로쇠나무의 수액채취량과 생장 및 온도와의 관계. 임업육종연구보고 25: 30-34.
  6. 산림청. 2008. 수액의 채취 및 관리지침. http://civil.forest.go.kr
  7. 안종만, 강학모, 김준선. 1998. 고로쇠나무 수액의 채취와 유통구조에 관한 연구. 한국임학회지 87(3): 391-403.
  8. 윤승락, 조종수, 김태옥. 1992. 자작나무와 단풍나무류의 수액채취 및 이용. 목재공학 20(4): 15-20.
  9. 이경준, 차윤정, 박종영, 박정호. 1995. 고로쇠나무 자생지의 기상, 입지환경, 나무크기, 천공방법이 수액 유출에 미치는 영향. 서울대학교 농과대학 연습림보고 31: 1-16.
  10. 이병두, 정주상, 권대순. 2006. 퍼지집합과 GIS를 이용한 고로쇠나무 임분의 수액채취 적지 분석. 한국임학회지 95(1): 38-44.
  11. 조남석, 김홍은, 민두식, 박철하. 1998. 건강음료로서의 자작나무 수액의 유출량에 미치는 영향인자. 목재공학 26(3): 93-99.
  12. 최원실, 박미진, 이학주, 최인규, 강하영. 2010. 고로쇠나무 수액의 출수에 미치는 영향인자 분석 : (I) 광양지역. 목재공학 38(1): 66-74.
  13. Johnson, R. W., M. T. Tyree, and M. A. Dixon. 1987. A requirement for sucrose in xylem sap flow from dormant maple trees. Plant Physiol 84: 495-500. https://doi.org/10.1104/pp.84.2.495
  14. Marvin, J. W. 1958. The physiology of maple sap flow. In KW Thimann, ed., The physiology of Forest Trees. Ronald Press, New York pp. 95-124.
  15. Marvin, J. W., M. F. Morselli, and F. M. Laing. 1967. A correlation between sugar concentration and volume yields in sugar maple: an 18-year study. For. Sci. 13: 346-351.
  16. Marvin, J. W. and M. T. Greene. 1951. Temperature induced sap flow in excise stems of Aver. Plant Physiol 26: 565-580. https://doi.org/10.1104/pp.26.3.565
  17. Marvin, J. W. and R. O. Ericson. 1956. A statistical evaluation of some of the factors responsible for the flow of sap from the sugar maple. Plant Physiol 31: 57-61. https://doi.org/10.1104/pp.31.1.57
  18. Milburn, J. A. and P. E. R. O'Malley. 1984. Freezeinduced sap absorption in Acer pseudoplatanus : a possible explanation. Can. J. Bot. 62: 2101-2106. https://doi.org/10.1139/b84-285
  19. Johnson, R. W., and M. T. Tyree. 1992. Effect of stem water content on sap flow from dormant maple and butternut stems : Introduction of sap flow in butternut. Plant Physiol 100: 853-858. https://doi.org/10.1104/pp.100.2.853
  20. O'Malley, P. E. R. and J. A. Milburn. 1983. Freezeinduced fluctuations in xylem sap pressure in Acer pseudoplatanus. Can. J. Bot. 61: 3100-3106. https://doi.org/10.1139/b83-349
  21. Robert, W. J., T. T. Mevin, and A. D. Michael. 1987. A Requirement for sucrose in xylem sap flow from dormant maple trees. Plant Physiol 84: 495-500. https://doi.org/10.1104/pp.84.2.495
  22. Sauter, J. J., W. Iten, and M. H. Zimmermann. 1973. Studies on the release of sugar into the vessels of sugar maple (Acer saccharum). Can. J. Bot. 51: 1-8. https://doi.org/10.1139/b73-001
  23. Sauter, J. J. 1971. Physiology of sugar maple. Harv. For. Annu. Rep. 1970-1971, pp 10-11. https://doi.org/10.1139/b73-001
  24. Tyree, M. T. 1983. Maple sap uptake, exudation, and pressure changes correlated with freezing exotherms and thawing endotherms. Plant Physiol 73: 277-285. https://doi.org/10.1104/pp.73.2.277
  25. Tyree, M. T. and S. Yang. 1992. Hydraulic conductivity recovery versus water pressure in xylem of Acer saccharum. Plant Physiol. 100: 669-676. https://doi.org/10.1104/pp.100.2.669
  26. Yang, S. and M. T. Tyree. 1992. A theoretical model of hydraulic conductivity recovery from embolism with comparison to experimental data on Acer saccharum. Plant Cell Environ 15: 633-643. https://doi.org/10.1111/j.1365-3040.1992.tb01005.x

Cited by

  1. Physicochemical Characteristics and Nutritional Components of Goroshoe (Acer mono Max.) Sap with Collection Periods vol.40, pp.10, 2011, https://doi.org/10.3746/jkfn.2011.40.10.1482
  2. Sap Outflow Characteristics of Walnut Tree (Juglans sinensis Dode) vol.27, pp.2, 2014, https://doi.org/10.7732/kjpr.2014.27.2.188