DOI QR코드

DOI QR Code

목재와 목질보드 복합적층재의 휨 크리프 성능

Bending Creep Performances of Hybrid Laminated Woods Composed of Wood-Wood Based Boards

  • 박한민 (경상대학교 환경산림과학부, 농업생명과학연구원) ;
  • 강동현 (경상대학교 환경산림과학부, 농업생명과학연구원) ;
  • 최윤은 (경상대학교 환경산림과학부, 농업생명과학연구원) ;
  • 안상열 ((주)한솔홈데코) ;
  • 류현수 (경상대학교 환경산림과학부, 농업생명과학연구원) ;
  • 변희섭 (경상대학교 환경산림과학부, 농업생명과학연구원)
  • Park, Han-Min (Faculty of Forest Science, Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Kang, Dong-Hyun (Faculty of Forest Science, Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Choi, Yoon-Eun (Faculty of Forest Science, Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Ahn, Sang-Yeol (Hansol Homedeco. Co. Ltd.. Flooring R&D Institute) ;
  • Ryu, Hyun-Su (Faculty of Forest Science, Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Byeon, Hee-Seop (Faculty of Forest Science, Institute of Agriculture & Life Science, Gyeongsang National University)
  • 투고 : 2009.07.08
  • 심사 : 2009.10.14
  • 발행 : 2010.01.25

초록

이 연구에서는 목재의 효율적인 이용의 일환으로 스프루스 직교형적층재의 중층을 중밀도섬유판(medium density fiberboard, MDF), 파티클보드(particle board, PB) 및 오에스비(oriented strand board, OSB)의 3종류의 시판용 목질보드를 복합적층한 3층 목질계 복합적층재(패널)를 제작하여, 중층 목질보드라미나의 구성엘리멘트가 복합적층재의 휨 크리프성능에 미치는 영향을 조사하였다. 복합적층재의 휨 크리프곡선은 우측상변이 급증하는 지수함수 그래프를 나타내었고, 각 복합적층재의 중층 목질보드라미나의 종류에 따라 다른 경향을 나타내었다. 복합적층재의 크리프변형은 표층섬유직각방향($C_{\perp}$ 타입)에서는 중층에 PB, MDF, OSB를 배열한 $C_{\perp}$(P)타입 > $C_{\perp}$(M)타입 > $C_{\perp}$(O)타입의 순으로, OSB를 중층에 배열한 타입의 크리프변형이 MDF나 PB를 중층에 배열한 것의 2배 이상 적은 것이 확인되었고, 복합적층에 의해 스프루스 섬유직각방향의 크리프변형의 현저한 감소가 나타났다. 한편, 표층섬유방향($C_{\parallel}$ 타입)의 크리프변형은 중층에 PB, OSB, MDF를 삽입한 $C_{\parallel}$(P)타입 > $C_{\parallel}$(O)타입 > $C_{\parallel}$(M)의 순이었으나, 복합적층에 의해 적층재상호간의 비는 현저히 감소하였고, 중층에 PB와 OSB를 배열한 복합적층재의 크리프변형의 차이는 매우 적은 것이 확인 되었다. 이 값은 목질보드의 크리프변형보다는 0.108~0.464배의 적은 크리프변형을 나타내어 복합적층에 의해 목질보드의 크리프변형의 현저한감소가 나타났다. 복합적층재의 표층섬유방향에 대한 표층섬유직각방향의 크리프이방성은 초기변형보다 크리프변형이 현저히 컸지만, 스프루스 평행형적층재의 크리프이방성보다는 현저히 감소하는 것이 확인되었다.

In this study, to study an effective use and improve strength performances of woods and wood-based materials, three-ply hybrid laminated woods which are composed of spruce in the face and three kinds of wood-based boards (MDF, PB, OSB) in the core were manufactured, and the effect of constitution elements used for the core laminae on bending creep performances was investigated. The shape of creep curves showed exponential function plots which the upper right side was increased, and differed among the kinds of wood-based boards used for the core laminae of hybrid laminated wood. The creep deformation perpendicular to the grain of faces of hybrid laminated woods was in order $C_{\perp}$(P) > $C_{\perp}$(M) > $C_{\perp}$(O) with PB, MDF and OSB in the core, respectively. It was found that the creep deformation arranged with OSB in the core had 2 times smaller than those arranged with MDF and PB in the core. By hybrid laminating, the creep deformation of spruce perpendicular to the grain was markedly decreased. On the other hand, the creep deformation parallel to the grain of the faces ($C_{\parallel}$ type) of hybrid laminated woods was in order $C_{\parallel}$(P) > $C_{\parallel}$(O) > $C_{\parallel}$(M) with PB, OSB and MDF in the core. The ratios among three hybrid laminated woods were considerably decreased, especially the difference between $C_{\parallel}$(P) and $C_{\parallel}$(O) hybrid laminated woods arranged with PB and OSB in the core was very small. These values showed 0.108~0.464 times smaller than creep deformation of three wood-based boards and it was found that creep deformation of three wood-based boards was considerably decreased by hybrid laminating. Creep anisotropy of hybrid laminated woods was greater in creep deformation than in initial deformation, whereas it was found that the values was much smaller than that of spruce parallel laminated woods.

키워드

참고문헌

  1. 박한민, 문성재, 최윤은, 박정환, 변희섭. 2009. 목재와 목질보드 복합적층재의 휨 강도성능. 37(6): 546-555.
  2. 大態幹章. 1964. 合板の壓締時のクリ一プ歪みについて. 大材學會誌. 10(4): 17-21.
  3. 大熊幹章, 田代 周. 1968. 接着劑の種類と合板の曲げクリ一プ. 木材工業. 23(4): 25-27.
  4. 中井 孝. 1978a. ボ一ド類の曲げクり一プ試驗(1). 木材工業. 33(4): 19-21.
  5. 中井 孝. 1978b. ボ一ド類の曲げクり一プ試驗(2). 木材工業. 33(6): 17-19.
  6. 有馬孝禮, 佐藤雅俊, 益田惠吾. 1981. 木質材料及び部材の長期耐力評價に闕する硏究. 建築硏究報告. 95: 35-38.
  7. 則元 京, 山田 正. 1966. パ一ティクルボ一ドのクリ一プについて. 木材硏究. 39: 22-28.
  8. 齋藤藤市. 1980. 大質材料の長期曲げ負荷おける變形と强度. 大材工業. 36(3): 107-112.
  9. 齋藤藤市, 池田正行, 小川克己. 1980. パ一テクルボ一ドの長期曲げ負荷における變形擧動. 木材學會誌. 26(11): 714-718.
  10. Bryan, E. L. and A. P. Schniewind. 1965. Strength and rheological properties of particleboard. Forest Prod. J. 15: 143-148.
  11. 北原覺一, 彭 武財 (1965). ハ一ドボ一ドのクリ一プについて. 大材學會誌. 11(6): 88-92.
  12. Moslemi, A. A. 1964. Some aspects of viscoelastic behavior of hardboard. Forest Prod. J. 14(8): 337-342.
  13. 朴漢玟, 伏谷賢美, 久保隆文, 佐藤敬一, 卞熙燮. 2002. スギ材を用いた直交型積層材の曲げクリ一プ性 能. 大材學會誌. 48(3): 166-177.
  14. Park, H. M., M. Fushitani, K. Sato, T. Kubo, and H. S. Byeon. 2006. Bending creep performances of three-ply cross-laminated woods made with five species. J. Wood Sci. 52(3): 220-229. https://doi.org/10.1007/s10086-005-0750-7
  15. 朴漢玟, 伏谷賢美. 2007. 木材一了ルミ二ウム複合積層材の曲げクリ一プ特性. 大材學會誌. 53(1): 14-24.
  16. Hoyle, R. J., R. Itani, and J. T. Anderson. 1994. The effect of moisture cycling on creep of small glued laminated beams. Wood Fiber Sci. 26: 556-562.
  17. 荒武志朗, 有馬孝禮. 1995. 濕度變動過程におけるスギ大斷面材のクリ一プ. 大材學會誌. 41(4): 359-366.
  18. 荒武志朗, 有馬孝禮. 1996. スギ大斷面材のクリ一プ(第2報)荷重增減下及び除荷御の擧動と變形モデルによる予測. 大材學會誌. 42(8): 755-761.
  19. 荒武志朗, 森田秀樹, 有馬孝禮. 2002. 自然環境下における各種中斷面部材のクリ一プ(第1報) 住宅の耐用年數を考慮した將來の變型予測. 大材學會誌. 48(4): 233-240.
  20. 則元 京, 山田 正. 1966. パ一ティクルボ一ドのクリ一プについて. 大材硏究. 39: 22-28.

피인용 문헌

  1. Bending Creep Performance of Domestic Wood-Concrete Hybrid Laminated Materials vol.44, pp.1, 2016, https://doi.org/10.5658/WOOD.2016.44.1.57
  2. Effect of Annual Ring Angles on Static Bending Strength Performances of Cross-Laminated Woods Made with Spruce vol.42, pp.3, 2014, https://doi.org/10.5658/WOOD.2014.42.3.290