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GENERALIZATION OF THE SIGN REVERSING
INVOLUTION ON THE SPECIAL RIM HOOK
TABLEAUX

JAEJIN LEE

ABSTRACT. Egecioglu and Remmel [1] gave a combinatorial inter-
pretation for the entries of the inverse Kostka matrix K ~!. Using
this interpretation Sagan and Lee [8] constructed a sign reversing
involution on special rim hook tableaux. In this paper we generalize
Sagan and Lee’s algorithm on special rim hook tableaux to give a
combinatorial partial proof of K 'K = I.

1. Introduction

Let A, i be partitions of a nonnegative integer n. Kostka number
K, is the number of column strict tableaux 7' of shape sh(T) = A
and content(7') = p. For fixed n, we collect these numbers into the
Kostka matrix K = (K ,). If we use the reverse lexicographic order on
partitions, K is an upper unitriangular matrix, and so K is invertible.

In [1] Egecioglu and Remmel gave a combinatorial interpretation for
the entries of the inverse Kostka matrix K ! and used the combinatorial
interpretation to give a proof of the fact that KK ~! = I using a sign
reversing involution, but were not able to do the same thing for the
identity K 'K = I.

In [8] Sagan and Lee constructed an algorithmic sign-reversing invo-
lution which proves that the last column of KK = I is correct. Parts
of Sagan and Lee’ procedure are reminiscent of the lattice path involu-
tion of Lindstréom [5] and Gessel-Viennot [3, 4] as well as the rim hook
Robinson-Schensted algorithm of White [11] and Stanton-White [10].

Received August 16, 2010. Revised September 7, 2010. Accepted September 10,
2010.

2000 Mathematics Subject Classification: 05E10.

Key words and phrases: sign reversing involution, Kostka number, special rim
hook tableaux.



290 Jaejin Lee

In this paper we generalize Sagan and Lee’s algorithm on special rim
hook tableaux, which gives a combinatorial partial proof of K~'K = I.

2. Definitions and combinatorial interpretation for K;}\

In this section we describe some definitions necessary for later. See
2], 6], [7] or [9] for definitions and notations not described here.

DEFINITION 2.1. A partition A of a positive integer n, denoted A - n,
is a weakly decreasing sequence of positive integers summing to n. We
say each term J; is a part of A\ and the number of nonzero parts is called
the length of A and is written ¢ = ¢(\). In addition, we will use the
notation A = (1",2™2 ... n) which means that the integer j appears
m; times in A.

DEFINITION 2.2. Let A = (Ay,..., ;) be a partition. The Ferrers
diagram D, of X\ is the array of cells or boxes arranged in rows and
columns, A; in the first row, Ay in the second row, etc., with each row
left-justified. That is,

Dy={(i,j) €Z* |1 <i <L\, 1 <5< N}

where we regard the elements of D, as a collection of boxes in the plane
with matrix-style coordinates.

DEFINITION 2.3. If A, p1 are partitions with Dy 2 D,,, the skew shape
Dy, or just A\/pu is defined as the set-theoretic difference D)\ D,. Thus

Dy ={(i,5) € Z* | 1 <i < (\), i < j < N}

Figure 2.1 shows the Ferrers diagram Dy and skew shape D,/,, re-
spectively, when A = (5,4,2,1) F 12 and p = (2,2,1) - 5.

Dy = Dy =

Figure 2.1
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DEFINITION 2.4. Let A be a partition. A tableau T of shape X is an
assignment 1" : D) — P of positive integers to the cells of \. The content
of the tableau T', denoted by content(7'), is the finite nonnegative vector
whose ith component is the number of entries ¢ in T

A tableau T of shape A is said to be column strict if it satisfies the
following two conditions:

(i) T(i,j) < T(i,j+1), i.e., the entries increase weakly along the rows
of A from left to right.

(ii) T(i,5) < T(i + 1,7), i.e., the entries increase strictly along the
columns of A from top to bottom.

In Figure 2.2, T is a tableau of shape (5,4,2,1) and S is a column
strict tableau of shape (5,4,2,1) and of content (3,3,1,2,2,1).

131813 111(1)4(6
51212 1(5 212125
T = S =
6 |7 315
4 4
Figure 2.2

DEFINITION 2.5. For partitions A and p of a positive integer n, the
Kostka number K , is the number of column strict tableaux of shape \
and content u.

If we use the reverse lexicographic order on the set of partitions of a
fixed n, the Kostka matriz K = (K ,) becomes upper unitriangular so
that K is invertible.

DEFINITION 2.6. A 7im hook H is a skew shape which is connected
and contains no 2 x 2 square of cells. The size of H is the number of
cells it contains. The leg length of rim hook H, ¢{(H), is the number of
vertical edges in H when viewed as in Figure 2.3. We define the sign of
a rim hook H to be ¢(H) = (—1)*D,

Figure 2.3 shows the rim hook H of size 6 with ¢(H) = 2 and ¢(H) =
(—-1)?=1.
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Figure 2.3

DEFINITION 2.7. A rim hook tableau T of shape A is a partition
of the diagram of A\ into rim hooks. The type of T is type(T) =
(1™ 2m2 . n™n) where my is the number of rim hooks in 7' of size
k. We now define the sign of a rim hook tableau 7" as

e(T) = [ e(H).

A rim hook tableau S is called special if each of the rim hooks contains
a cell from the first column of A\. We use nodes for the Ferrers diagram
and connect them if they are adjacent in the same rim hook as S in

Figure 2.4.
*—o
111 (1]3 (3
11211215
T: S:
212
4
Figure 2.4

In Figure 2.4, T is a rim hook tableau of shape (5,4,2,1), type(T') =
(12,2,4%) and €¢(T) = (=1)* - (=)' - (=1)°- (=1)°- (=1)° = 1, while S is
a special rim hook tableau with shape (5,3,2,1,1), type(S) = (2,4, 6)
and €(S) = (=1)°- (=1)} - (=1)?> = —1.

We can now state Egecioglu and Remmel’s interpretation for the en-
tries of the inverse of Kostka matrix.

THEOREM 2.8 (Egecioglu and Remmel[1]). The entries of the inverse
Kostka matrix are given by

Kl;}\ = Z €(.9)

S
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where the sum is over all special rim hook tableaux S with shape A and
type (. O

3. Sagan and Lee’s sign reversing involution

In this section we introduce Sagan and Lee’s sign reversing involution
on the special rim hook tableaux. See [8] for details.

Let S be a special rim hook tableau with #(S) = p, and T be a
standard Young tableau of the same shape as S, where y is a partition
of n. Sagan and Lee exhibited a sign reversing involution I on such pairs
(S, 7).

If the cell of n in T' corresponds to a hook of size one in S, I can be
clearly defined by induction. So for the rest of this section assume that
the cell containing n in T' corresponds to a cell in a hook of at least two
cells in S.

To describe I under this assumption, a rooted Ferrers diagram is
defined as a Ferrers diagram where one of the nodes has been marked.
Marked cell will be indicated in the figures by making the distinguished
node a square. '

Now associate with any pair (S, T") a rooted special rim hook tableau S
by rooting S at the node where the entry n occurs in 7. A sign reversing
involution ¢ will be defined on the set of rooted special rim hook tableaux
of given type which are obtainable in this way. In addition, ¢ will have
the property that if +(S) = 5" and S, 8" have roots 7, r’ respectively, then

(1) sh(S) —r =sh(S") — ¢

where the minus sign represents set-theoretic difference of diagrams. The
full involution I(S,T) = (S’,T") will then be the composition

(5,T) — S - 8" — (5", T")
where S’ is obtained from S’ by forgetting about the root and 7" is
obtained by replacing the root of S’ by n and leaving the numbers
1,2,...,n — 1 in the same positions as they were in 7. Note that (1)
guarantees that 7" is well defined. Furthermore, it is clear from construc-
tion that I will be a sign reversing involution because ¢ is. Even though
¢ has not been fully defined, an example of the rest of the algorithm can

be given as follows. See [8] for the definition of ¢. Given (S,T), Figure
3.1 shows how a sign reversing involution I works on (S,7).
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Figure 3.1
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THEOREM 3.1 (Sagan and Lee[8]). Let u be a partition of n with
w# 1" Let

I'= {(S,7) | #(S) = p.sh(S) = sh(T) },

where S is a special rim hook tableau and T is a standard Young tableau.
Then I defined in the above gives a sign reversing involution on I'. [

4. Generalization of the Sagan and Lee’s sign reversing in-
volution

In this section we generalize Sagan and Lee’s algorithm on special rim
hook tableaux to get a combinatorial partial proof of K 'K = I.

We first define a linear extension tableau e(T") for a column strict
tableau T'.

DEFINITION 4.1. Let T be a column strict tableau. The linear exten-
sion tableau e(T') is the standard Young tableau of the same shape as T'
defined in the following way.

(i) f T(i,5) < T(k,1), define e(T)(i,75) < e(T)(k,1).

(ii) Assume 7T'(i,7) = T'(k,l). Define e(T)(i,7) < e(T)(k,l) if i < k or
1=k,j5 <l.

See Figure 4.1 for an example of the linear extension tableau e(T") of T'.

1{1(21(3]3 11213516

214 |5|5 4 (819 |10
T: G(T):

3|5 7111

6 12

Figure 4.1
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We are now ready to describe our main theorem.

THEOREM 4.2. Let v and v = (1™,2™2) be partitions of n. Then
(2) > e(8) = duw
(8.7)

the sum being all pairs (S,T) where S is a special rim hook tableau with
t(S) = p and T is a column strict tableau of content (T') = v with the
same shape as S, and where 9,,,, is the Kronecker’s delta.

Proof. We will prove this identity by exhibiting a sign reversing in-
volution I* on such pairs (S,7T), where (S,T) # (So,To). Here I is the
involution defined in Section 3 and

o o 1 1

e o 2 2

o o k k
So, To) =

° k+ 2

. m

Figure 4.2

Suppose first that the cell of the biggest entry m in 7" corresponds to
a hook of size one in S. Then since S is special, this cell is at the end
of the first column. In this case, remove that cell from both S and T
to form S and T respectively. Now we can assume, by induction, that
I"(S,T) = (5, T) has been defined. So let I*(S,T) = (S',T") where 5’
is S with a hook of size 1 added to the end of the first column and 7"
is T' with a cell labeled m added to the end of the first column. Clearly
this will result in a sign reversing involution as long as this was true for
pairs with n — 1 cells. So for the rest of this section we will also assume
that the cell containing the biggest entry in 7' corresponds to a cell in a
hook of at least two cells in S.

With these assumptions let (S”,T") be the image of (S, e(T")) under
the involution I, i.e., (S”,T") = I(S,e(T)). We divide into the following
two cases.
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Case 1 If there is a column strict tableau 7" of content v such that e(7") =
T", define I*(S,T) = (S',T") with S" = 5". See Figure 4.3.

o 3 I 103
5 2 5
4 6

Y

(S,T) = (S, 1" =

1
2
4
6

Figure 4.3

Case 2 Assume now there is no column strict tableau 7" of content v such
that e(7") = T”. Under this assumption let b,y = (7,7) and
b, = (k,l) be the cells in e(T") whose entries are n — 1 and n,
respectively.

(2-a) If i < k, j # [ since there is no column strict tableau 7"
such that e(T") = T”. Let T} be the standard Young tableau
obtained from e(T") by exchanging entries n — 1 and n, and
let (SY,T7) = I(S,T1). If T} is the column strict tableau of
content v such that e(77) = T/, define I*(S,T) = (S}, T}) with
S; = 5]. See Figure 4.4.

o—eo—o 1 2 4 1 2 6 1 2 7
2 3 3 4 3 4
3 5) 5)
4 7 6
I—o 1 2 1 2
3 4 2 3
Sy =S = Ty = T; =
5 7 3 4
6 4
Figure 4.4

(2-b) If i = k, then [ = j + 1 and only two cells b,_1,b, are in the
last row of e(7). Hence cells of the entries n — 1 and n in e(T")
corresponds to a hook x of size two which are in last row of S.
See Figure 4.5. In this case, remove last hook s from both S
to form S, and remove two cells b,_1, b, from e(T) to form T.
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Let I(S,T) = (S, T'). We define S, as S’ with a hook of size 2
added to the end of the first column, and define T5 as T with
two cells labeled n — 1, n added to the end of the first column.
Finally let 1(S,T2) = (S5,7y). If there is a column strict
tableau T such that e(T3) = Ty, define I*(S,T) = (S5,T3)
with S} = S7.

{}

e~ W =
w N

1 2 3 6 *—eo—o—o 1 2 3 6
T SQZ TQZ
4 5 *—o 4 5
I 7
8
, *—eo—o—o 1 2 3 6 1 1 2 3
*—eo 4 5 2 3
*—e 7 8 4 4
Figure 4.5

Clearly I* is also a sign reversing involution since [ is a sign reversing
involution. Hence all terms €(.S) in the summation of (2) are cancelled
out except €(Sp), which is 1. This fact implies the identity in (2). O
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