Abstract
In this paper, we investigate the extent of the set on which the modulus of a meromorphic function is lower bounded by a term related to some Nevanlinna Theory functionals. A. I. Shcherba estimate the size of the set on which the modulus of an entire function is lower bounded by 1. Our theorem in this paper shows that the same result holds in the case that the lower bound is replaced by$lT(r,f)$, $0{\leq}l$ < 1, which improves Shcherba's result. We also give a similar estimation for meromorphic functions.