DOI QR코드

DOI QR Code

Anti-calcification Effects in Decellularized and Variously Fixed Bovine Pericardium

소심낭 절편의 무세포화와 알코올 전처치를 포함한 여러 고정 처리법 시행 후 석회화 경감 효과 관찰 연구

  • Hwang, Seong-Wook (Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital) ;
  • Kim, Yong-Jin (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital) ;
  • Kim, Soo-Hwan (Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center) ;
  • Choi, Seung-Hwa (Seoul National University Hospital Clinical Research Institute, Xenotransplantation Research Center)
  • 황성욱 (분당서울대학교병원 흉부외과) ;
  • 김용진 (서울대학교병원 흉부외과) ;
  • 김수환 (서울대학교병원 이종장기이식센터) ;
  • 최승화 (서울대학교병원 이종장기이식센터)
  • Received : 2009.09.28
  • Accepted : 2010.03.09
  • Published : 2010.06.05

Abstract

Background: Our goal was to evaluate anti-calcification effects of decellularization and diverse fixing methods including preincubation of the bovine pericardium with ethanol. We also assessed changes in mechanical properties. Material and Method: Harvested bovine pericardium was decellularized with 0.25% sodim dodecysulfate and then treated with 5 methods of fixation: (1) 0.5% glutaraldehyde (GA) for 14 days, (2) 0.5% GA for 5 days, 2% GA for 2 days and 0.25% GA for 7 days, (3) 0.5% GA for 5 days, 2% GA for 2 days, 0.25% GA for 7 days, and then 70% ethanol for 2 days, (4) 0.5% GA for 5 days, a mixture of 2% GA and 70% ethanol for 2 days, and 0.25% GA for 7 days, (5) 0.5% GA for 5 days, a mixture of 2% GA, 65% ethanol, and 5% octanediol for 2 days and then 0.25% GA for 7 days. All treated bovine pericardia were tested for histological variables, lipid content, and mechanical properties including tensile strength and thermal stability. A total 10 kinds of differently treated bovine pericardia were implanted into rat subdermis and harvested 8 weeks later. Harvested pericardia were evaluated for calcium content. Result: No protein denaturation was observed microscopically after decellularization. There was a 32% mean decrease in tensile strength index after decellularization in the bovine pericardium group fixed. Octanediol preincubation attenuated the decrease in tensile strength and maintained thermal stability. TG and cholesterol were not affected by decellularization but were decreased by organic solvent. Calcium content was decreased after decellularization, and organic solvent preincubation decreased calcification in the non-decellularized bovine pericardium group. Conclusion: Decellularization and organic solvent preincubation have anti-calcification effects but decellularization may cause mechanical instability. A method of decellularization and fixation that does not cause damage to matrices will be needed for evaluation of the next step in using tissue-engineering for replacement of cardiac valves.

배경: 심장혈관대체물로서 인체내에 이식된 우심낭의 부전은 석회화 및 기계적 변성에 의하여 이루어지며, 조기 부전의 가장 흔한 원인인 석회화 방지를 위하여 우심낭의 무세포화 처치를 시행하고 알코올 전처치를 포함한 여러 고정 방법을 병행하여 그에 따른 기계적 특성의 변화와 실제 생체 이식 시 석회화 정도를 알아보고자 하였다. 대상 및 방법: 우심낭을 신선 상태와, 0.25% Sodium dodecylsulfate를 이용하여 무세포화 처치를 한 상태에서 각각 5가지의 방법을 이용하여 고정을 시행하였다. 5가지의 방법은 (1) 0.5 % glutaraldehyde (GA)로 2주간 처치, (2) 0.5% GA로 5일간 처치, 그 후 2일간 2% GA 처치 후 7일간 0.25% GA로 처치, (3) 0.5% GA로 5일간 처치 후 2일간 2% GA 처치 후 7일간 0.25% GA로 처치, 이후 70% 에탄올로 2일간 처치, (4) 0.5% GA로 5일간 처치 후, 2% GA와 70% 에탄올 혼합액으로 2일간 처치한 후 0.25% GA로 7일간 처치, (5) 0.5% GA로 5일간 처치 후 2% GA, 65% 에탄올, 5% octanediol 혼합액으로 2일간 처치한 후, 0.25% GA로 7일간 처치하여 구분하였다. 각각의 처치 후 조직 검사와 지질 양 측정과 기계적 특성에 대한 검사를 시행하였다. 처치가 끝난 총 10종류의 우심낭편을 쥐의 피하조직에 이식하고 8주가 지난 후 채취하여 석회화의 정도를 측정하였다. 결과: 조직 검사에서 무세포화 후에 특이적인 기질의 변성은 관찰되지 않았으며, 동일한 고정 방법을 사용한 경우 무세포화 처리를 한 우심낭편에서 평균 32% 정도의 장력 저하가 있었고, 유기용매 전처치 시 octanediol을 병행 처치하면 장력 저하를 줄이고 thermal stability를 유지시키는 효과가 있었다. 중성지방과 콜레스테롤의 양은 무세포화 처리에 영향을 받지 않았으며, 유기용매 중 octanediol 전처치를 시행하는 경우 그 양이 더욱 줄어드는 양상을 보였다. 무세포화 처리는 항석회화 효과를 보였으며, 유기용매 전처치를 시행하는 경우 석회화의 양이 더욱 감소하였다. 결론: 유기용매 전처치와 무세포화는 항석회화 효과가 있으며, 무세포화 처치는 우심낭 조직의 기계적 성능의 감소를 가져왔다. 조직의 기질에 손상을 주지 않는 무세포화와 고정방식에 대한 연구는 이종장기 연구 과정에서 매우 중요한 역할을 할 것으로 기대한다.

Keywords

References

  1. Schoen FJ, Levy RJ. Tissue heart valves: current challenge and future research perspectives. J Biomed Mater Res 1999;47:439-65 https://doi.org/10.1002/(SICI)1097-4636(19991215)47:4<439::AID-JBM1>3.0.CO;2-O
  2. Carpentier A, Deloche A, Relland J, et al. Six-year follow-up of GA-preserved heterografts; with particular reference to the treatment of congenital valve malformations. J Thorac Cardiovasc Surg 1974;68:771-82
  3. Schoen FJ, Levy RJ. Calcification of tissue heart valve subsutitutes: progress toward understanding and prevention. Ann Thorac Surg 2005;79:1072-80 https://doi.org/10.1016/j.athoracsur.2004.06.033
  4. Manji RA, Zhu LF, Nijjar NK, et al. GA-fixed bioprosthetic heart valve conduits calcify and fail from xenograft rejection. Circulation 2006;114:318-27 https://doi.org/10.1161/CIRCULATIONAHA.105.549311
  5. Bodnar E, Olsen EG, Florio R, Dobrin J. Damage of porcine aortic valve tissue caused by the surfactant sodiumdodecylsulphate. Thorac Cardiovasc Surg 1986;34:82-5 https://doi.org/10.1055/s-2007-1020381
  6. Samouillan V, Lamure A, Maurel E, et al. Characterization of elastin and collagen in aortic bioprostheses. Med Biol Eng Comput 2000;38:226-31 https://doi.org/10.1007/BF02344781
  7. Vyavahare N, Hirsch D, Lerner E, et al. Prevention of bioprosthetic heart valve calcification by ethanol preincubation. Circulation 1997;95:479-88 https://doi.org/10.1161/01.CIR.95.2.479
  8. Coito AJ, Kupiec-Weglinski JW. Extracellular matrix proteins: bystanders or active participants in the allograft rejection cascade? Ann Transplant 1996;1:14-8
  9. Smith JD, Hornick PI, Rasmi N, Rose ML, Yacoub MH. Effect of HLA mismatching and antibody status on 'homovital' aortic valve homograft performance. Ann Thorac Surg 1998;66:S212-5 https://doi.org/10.1016/S0003-4975(98)01115-1
  10. Grauss RW, Hazekamp MG, Vliet SV, Gittenberger-de Groot AC, DeRuiter MC. Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J Thorac Cardiovasc Surg 2003;126:2003-10 https://doi.org/10.1016/S0022-5223(03)00956-5
  11. Meyer SR, Nagendran J, Desai LS, et al. Decellularization reduces the immune response to aortic valve allografts in the rat. J Thorac Cardiovasc Surg 2005;130:469-76 https://doi.org/10.1016/j.jtcvs.2005.03.021
  12. Talman EA, Boughner DR. GA fixation alters the internal shear properties of porcine aortic heart valve tissue. Ann Thorac Surg 1995;60(Suppl 2):S369-73 https://doi.org/10.1016/0003-4975(95)00250-O
  13. Lee JM, Haberer SA, Boughner DR. The bovine pericardial xenograft: I. Effect of fixation in aldehydes without constraint on the tensile viscoelastic properties of bovine pericardium. J Biomed Mater Res 1989;23:457-75 https://doi.org/10.1002/jbm.820230502
  14. Huang-Lee LLH, Cheung DT, Nimni ME. Biochemical changes and cytotoxicity associated with the degradation of polymeric GA derived crosslinks. J Biomed Mater Res 1990;24:1185-201 https://doi.org/10.1002/jbm.820240905
  15. Grabenwoger M, Sider J, Fitzal F, et al. Impact of GA on calcification of pericardial bioprosthetic heart valve material. Ann Thorac Surg 1996;62:772-7
  16. Christine ES, Jennie MB. Baier A cellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 2000;21:2215-31 https://doi.org/10.1016/S0142-9612(00)00148-4
  17. Schoen FJ, Harasaki H, Kim KM, Anderson HC, Levy RJ. Biomaterial-associated calcification: pathology, mechanisms, and strategies for prevention. J Biomed Mater Res 1988;22(Suppl A1):11-36
  18. Langdon SE, Chernecky R, Pereira CA, Abdulla D, Lee JM. Biaxial mechanical/structural effects of equibiaxial strain during crosslinking of bovine pericardial xenograft materials. Biomaterials 1999;20:137-53 https://doi.org/10.1016/S0142-9612(98)00142-2
  19. O'Brien TK, GAbbay S, Parkes AC, Knight RA, Zalesky PJ. Immunological reactivity to a new GA tanned bovine pericardial heart valve. Trans Am Soc Artif Intern Organs 1984;30:440-4
  20. Zilla P, Weissenstein C, Bracher M, et al. High GA concentration reduces rather than increase the calcification of aortic wall tissue. J Heart Valve Dis 1997;6:502-9
  21. Vincentelli A, Latrémouille C, Zegdi R, et al. Does GA induce calcification of bioprosthetic tissues? Ann Thorac Surg 1998;66:S255-8 https://doi.org/10.1016/S0003-4975(98)01098-4
  22. Manji R, Zhu LF, Nijjar NK, et al. GA-fixed bioprosthetic heart valve conduits calcify and fail from xenograft rejection. Circulation 2006;114:318-27 https://doi.org/10.1161/CIRCULATIONAHA.105.549311
  23. Courtman DW, Pereira CA, Kashef V, McComb D, Lee JM, Wilson GJ. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction. J Biomed Mater Res 1994;28:655-66 https://doi.org/10.1002/jbm.820280602
  24. Henriquez M, Lissi E, Abuin E, Ciferri A. Assembly of amphilic compounds and rigid polymers. 1. Interaction of SDS with collagen. Macromolecules 1994;27:6834-40 https://doi.org/10.1021/ma00101a023
  25. Kawazoye S, Tian SF, Toda S, et al. The mechanism of interaction of SDS with elastin fibers. J Biochem 1995;117:1254-60 https://doi.org/10.1093/oxfordjournals.jbchem.a124852
  26. Courtman DW, Pereira CA, Kashef V, McComb D, Lee JM, Wilson GJ. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction. J Biomed Mater Res 1994;28:655-66 https://doi.org/10.1002/jbm.820280602
  27. Courtman DW, Pereira CA, Omar S, Langdon SE, Lee JM, Wilson GJ. Biomechanical and ultrastructural comparison of cryopreservation and a novel cellular extraction of porcine aortic valve leaflets. J Biomed Mater Res 1995;29:1507-16 https://doi.org/10.1002/jbm.820291207
  28. Pettenazzo E, Valente M, Thiene G. Octanediol treatment of GA fixed bovine pericardium: evidence of anticalcification efficacy in the subcutaneous rat model. Eur J Cardiothorac Surg 2008;34:418-22 https://doi.org/10.1016/j.ejcts.2008.05.012
  29. Jones M, Eidbo EE, Hilbert SL, Ferrans VJ, Clark RE. Anticalcification treatment of bioprosthetic heart valves: in vivo studies in sheep. J Card Surg 1989;4:69-73 https://doi.org/10.1111/j.1540-8191.1989.tb00258.x
  30. Simon P, Kasimir MT, Seebacher G, et al. Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J Cardiothorac Surg 2003;23:1002-6 https://doi.org/10.1016/S1010-7940(03)00094-0

Cited by

  1. 소 심낭의 무세포화에서 트립신이 이식편의 물리-역학적 및 조직학적 변화에 미치는 영향 vol.43, pp.6, 2010, https://doi.org/10.5090/kjtcs.2010.43.6.565