Operational Strategy for Increasing Ethanol Production in Repeated Fed-batch Ethanol Fermentation Using Saccharomyces cerevisiae

Saccharomyces cerevisiae 를 이용한 반복 유가식 ethanol 발효에서 ethanol 생산량을 증가를 위한 운전 전략

  • Lee, Sang-Eun (Department of Biotechnology, Chungju National University) ;
  • Seo, Hyeon-Beom (Department of Biotechnology, Chungju National University) ;
  • Kwon, Min-Cheol (Division of Biomaterials Engineering, Kangwon National University) ;
  • Lee, Hyeon-Yong (Division of Biomaterials Engineering, Kangwon National University) ;
  • Jung, Kyung-Hwan (Department of Biotechnology, Chungju National University)
  • 이상은 (충주대학교 바이오산업학과) ;
  • 서현범 (충주대학교 바이오산업학과) ;
  • 권민철 (강원대학교 생물소재공학) ;
  • 이현용 (강원대학교 생물소재공학) ;
  • 정경환 (충주대학교 바이오산업학과)
  • Received : 2009.11.25
  • Accepted : 2010.04.21
  • Published : 2010.04.28

Abstract

We designed the optimal operational strategy in repeated fed-batch ethanol fermentation using Sacchromyces cerevisiae ATCC 24858 in views of ethanol yield, specific ethanol production rate, and ethanol productivity, when the aeration rate were controlled at 0.0 and 0.33 vvm. Coincidentally, the time intervals of withdrawal-fill of culture medium (24 and 36 h) were investigated. Ethanol yield and ethanol productivity when the aeration was carried out at 0.33 vvm were superior to those when the aeration was not carried out. Additionally, those parameters when the time interval of withdrawal-fill of culture medium was 24 h were superior to those when time interval of withdrawal-fill of culture medium was 36 h. The total ethanol production reached at the greatest value, 703.8 g-ethanol, when the aeration was carried out at 0.33 vvm and the time interval of withdrawal-fill of culture medium was 24 h. In this study, we verified experimentally the necessity of designing the operational strategy for increasing ethanol production in terms of aeration rate and time interval of withdrawal-fill of culture medium in the repeated fed-batch ethanol fermentation.

S. cerevisiae ATCC 24858을 이용한 ethanol 생산에서, aeration 효과를 ethanol 수율, specific ethanol production rate, ethanol 생산성 측면에서 분석하여, 반복 유가식 공정전략을 설계하였다. Ethanol 수율과 ethanol 생산성은 공기를 0.33 vvm 넣었을 때, 공기를 넣지 않고 배양한 것에 비하여 더 큰 값을 보였고, 24시간 마다 배지를 교체한 배양이 36시간 마다 배지를 교체한 배양 보다 더 큰 값을 보였다. 총 ethanol 생산량 값이 가장 큰 경우는 0.33 vvm의 공기를 넣고, 배지를 24시간마다 완전히 갈아주었을 때이고, 이때 가장 많은 703.8 g의 ethanol이 생산되었다.

Keywords

References

  1. Demirbas, A. (2007) Progress and recent trends in biofuels. Prog. Energy Combust. Sci. 33: 1-18. https://doi.org/10.1016/j.pecs.2006.06.001
  2. Hamelinck, C. N., G. van Hooijdonk, and A. P. C. Faaij (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28: 384-410. https://doi.org/10.1016/j.biombioe.2004.09.002
  3. Sanchez, O. J. and C. A. Cardona (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99: 5270-5295. https://doi.org/10.1016/j.biortech.2007.11.013
  4. Cardona, C. A. and O. J. Sanchez (2007) Fuel ethanol production: Process design trends and integration opportunities. Bioresour. Technol. 98: 2415-2457. https://doi.org/10.1016/j.biortech.2007.01.002
  5. Huanga, H. -J., S. Ramaswamya, U. W. Tschirner, and B. V. Ramaraob (2008) A review of separation technologies in current and future biorefineries. Sep. Purif. Technol. 62: 1-21. https://doi.org/10.1016/j.seppur.2007.12.011
  6. Seo, H. -B., S. S. Kim, H. -Y. Lee, and K. -H. Jung (2009) High-level production of ethanol during fed-batch ethanol fermentation with a controlled aeration rate and non-sterile glucose powder feeding of Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 14: 591-598. https://doi.org/10.1007/s12257-008-0274-2
  7. Alfenore, S., X. Cameleyre, L. Benbadis, C. Bideaux, J. -L. Uribelarrea, G. Goma, C. Molina-Jouve, and S. E. Guillouet (2004) Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl. Microbiol. Biotechnol. 63: 537-542. https://doi.org/10.1007/s00253-003-1393-5
  8. Alfenore, S., C. Molina-Jouve, S. E. Guillouet, J. -L. Uribelarrea, G. Goma, and L. Benbadis (2002) Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fedbatch process. Appl. Microbiol. Biotechnol. 60: 67-72. https://doi.org/10.1007/s00253-002-1092-7
  9. Cot, M., M. -O. Loret, J. Francois, and L. Benbadis (2007) Physiological behaviour of Saccharomyces cerevisiae in aerated fed-batch fermentation for high level production of bioethanol. FEMS Yeast Res. 7: 22-32. https://doi.org/10.1111/j.1567-1364.2006.00152.x
  10. Furukawa, K., E. Heinzle, and I. J. Dunn (1983) Influence of oxygen on growth of Saccharomyces cerevisiae in continuous culture. Biotechnol. Bioeng. 25: 2293-2317. https://doi.org/10.1002/bit.260251003
  11. Hoppe, G. K. and G. S. Hansford (1984) The effect of micro-aerobic conditions on continuous ethanol production by Saccharomyces cerevisiae. Biotechnol. Lett. 6: 681-686. https://doi.org/10.1007/BF00133837
  12. Grosz, R. and G. Stephanopoulos (1990) Physiology, biochemical, and mathematical studies of micro-aerobic continuous ethanol fermentation by Saccharomyces cerevisiae. I: Hysteresis, oscillations, and maximum specific ethanol productivities in chemostat culture. Biotechnol. Bioeng. 36: 1006-1019 https://doi.org/10.1002/bit.260361006
  13. Kirsop, B. H. (1981) Aeration in fermentation for ethanol production. Enzyme Microb. Technol. 3: 375-375. https://doi.org/10.1016/0141-0229(81)90019-3
  14. Ryu, D. D. Y., Y. J. Kim, and J. H. Kim (1984) Effect of air supplement on the performance of continuous ethanol fermentation system. Biotechnol. Bioeng. 26: 12-16. https://doi.org/10.1002/bit.260260104
  15. Sweere, A. P. J., J. R. Mesters, L. Janse, K. Ch. A. M. Luyben, and N. W. F. Kossen (1988) Experimental simulation of oxygen profiles and their influence on baker's yeast production: I. One-fermentor system. Biotechnol. Bioeng. 31: 567-578. https://doi.org/10.1002/bit.260310609
  16. Cardoso, H. and C. Leão (1992) Sequential inactivation of ammonium and glucose transport in Saccharomyces cerevisiae during fermentation. FEMS Microbiol. Lett. 73: 155-159.
  17. Gray, J. V., G. A. Petsko, G. C. Johnston, D. Ringe, R. A. Singer, and M. Werner-Washburn (2004) Sleeping beauty: quiescence in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 68: 187-206. https://doi.org/10.1128/MMBR.68.2.187-206.2004
  18. Herman, P. K. (2002) Stationary phase in yeast. Curr. Opin. Microbiol. 5: 602-607. https://doi.org/10.1016/S1369-5274(02)00377-6
  19. Leao, C. and N. van Uden (1982) Effects of ethanol and other alkanols on the glucose transport system of Saccharomyces cerevisiae. Biotechnol. Bioeng. 24: 2601-2604. https://doi.org/10.1002/bit.260241124
  20. Leao, C. and N. van Uden (1984) Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 774: 43-48. https://doi.org/10.1016/0005-2736(84)90272-4
  21. Seo, H. -B., J. -H. Yeon, M. H. Jeong, D. H. Kang, H. -Y. Lee, and K. -H. Jung (2009) Aeration alleviates ethanol inhibition and glycerol production during fed-batch ethanol fermentation. Biotechnol. Bioprocess Eng. 14: 599-605. https://doi.org/10.1007/s12257-009-0066-3
  22. Seo, H. -B., J. -H. Yeon, M. H. Jeong, D. H. Kang, H. -Y. Lee, and K. -H. Jung (2010) Long-term repeated fed-batch ethanol production in aerated condition. Biotechnol. Bioprocess Eng. 15: 324-328. https://doi.org/10.1007/s12257-009-0171-3