Biodiesel Production Using Microalgal Marine Biomass

미세조류 해양 바이오매스를 이용한 바이오디젤 생산기술

  • Jo, Byung-Hoon (School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology) ;
  • Cha, Hyung-Joon (School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology)
  • 조병훈 (포항공과대학교 시스템생명공학부) ;
  • 차형준 (포항공과대학교 시스템생명공학부)
  • Received : 2010.01.05
  • Accepted : 2010.04.20
  • Published : 2010.04.28

Abstract

The demand of biodiesel that is a renewable, alternative fuel for fossil-based petrodiesel seems to keep increasing. Exploiting lipids of microalgae as a raw material for biodiesel is already technically feasible. To realize economical production of microalgal biodiesel, several factors or strategies should be addressed and improved. Especially, researches on improvement of lipid synthesis by genetic or metabolic engineering are now in early stage, and prospects of this field are bright, requiring concerns and interests of many researchers to put practical use of microalgal biodiesel forward.

바이오 디젤은 석유 기반의 액체 연료를 대체할 수 있는 재생 가능한 대체 에너지로서, 특히 수송 연료에 있어 경유를 대신하여 일부 사용되어 있고 수요는 계속 증가할 것으로 보인다. 앞서 살펴본 바대로, 미세 조류의 지질을 바이오 디젤의 원료로 사용하는 방안은 기술적으로는 이미 실현 가능하다. 모든 생산 과정을 최적화시키고 biorefinery 개념을 도입하여 경제성을 최대한 끌어 올리며, 광생물반응기를 좀 더 개선시켜 효율을 높임과 동시에 수요 증가에 의해 가격이 낮아지게 되면 미세 조류를 이용한 바이오 디젤 생산의 경제적 문제를 해결할 수 있을 것이다. 특히 미세 조류에서의 유전공학적, 대사공학적인 지질 합성에 관한 연구는 아직도 몇 가지 유전자를 조작해보는 초기단계에 있고 이에 대한 발전 가능성은 긍정적이므로 앞으로 많은 연구자들이 이 분야에 관심을 가진다면 미세 조류 바이오 디젤의 실용화는 한 단계 앞당겨지리라 기대한다.

Keywords

References

  1. Ma, F. and M. A. Hanna (1999) Biodiesel production: a review. Bioresour. Technol. 70: 1-15. https://doi.org/10.1016/S0960-8524(99)00025-5
  2. Sharma, Y. C., B. Singh, and S. N. Upadhyay (2008) Advancements in development and characterization of biodiesel: a review. Fuel 87: 2355-2373. https://doi.org/10.1016/j.fuel.2008.01.014
  3. Sharma, Y. C. and B. Singh (2009) Development of biodiesel: current scenario. Renew. Sustain. Energ. Rev. 13: 1646-1651. https://doi.org/10.1016/j.rser.2008.08.009
  4. Zhang, Y., M. A. Dube, D. D. McLean, and M. Kates (2003) Biodiesel production from waste cooking oil: 1. process design and technological assessment. Bioresour. Technol. 89: 1-16. https://doi.org/10.1016/S0960-8524(03)00040-3
  5. Ranganathan, S. V., S. L. Narasimhan, and K. Muthukumar (2008) An overview of enzymatic production of biodiesel. Bioresour. Technol. 99: 3975-3981.
  6. Canakci, M. and H. Sanli (2008) Biodiesel production from various feedstocks and their effects on the fuel properties. J. Ind. Microbiol. Biotechnol. 35: 431-441. https://doi.org/10.1007/s10295-008-0337-6
  7. Durrett, T. P., C. Benning, and J. Ohlrogge (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J. 54: 593-607. https://doi.org/10.1111/j.1365-313X.2008.03442.x
  8. Schenk, P. M., S. R. Thomas-Hall, E. Stephens, U. C. Marx, J. H. Mussgnug, C. Posten, O. Kruse, and B. Hankamer (2008) Second generation biofuels: highefficiency microalgae for biodiesel production. Bioenerg. Res. 1: 20-43. https://doi.org/10.1007/s12155-008-9008-8
  9. Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  10. Spolaore P., C. Joannis-Cassan, E. Duran, and A. Isambert (2006) Commercial applications of microalgae. J. Biosci. Bioeng. 1: 87-96.
  11. Guschina, I. A. and J. L. Harwood (2006) Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 45: 160-186. https://doi.org/10.1016/j.plipres.2006.01.001
  12. Chisti, Y. (2007) Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 26: 126-131.
  13. Qiang L., D. Wei, and L. Dehua (2008) Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biotechnol. 80: 749-756. https://doi.org/10.1007/s00253-008-1625-9
  14. Badger, M. (2003) The roles of carbonic anhydrases in photosynthetic CO2 concentrating mechanisms. Photosyn. Res. 77: 83-94. https://doi.org/10.1023/A:1025821717773
  15. Benemann, J. R. (1993) Utilization of carbon dioxide from fossil fuel-burning power plants with biological systems. Energy Convers. Mgmt. 34: 999-1004. https://doi.org/10.1016/0196-8904(93)90047-E
  16. Yun, Y. S., S. B. Lee, J. M. Park, C. I. Lee, and J. W. Yang (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J. Chem. Technol. Biotechnol. 69: 451-455. https://doi.org/10.1002/(SICI)1097-4660(199708)69:4<451::AID-JCTB733>3.0.CO;2-M
  17. Vasudevan, P. T. and M. Briggs (2008) Biodiesel production-current state of the art and challenges. J. Ind. Microbiol. Biotechnol. 35: 421-430. https://doi.org/10.1007/s10295-008-0312-2
  18. Molina, E., E. Fernandez, F. G. Acien, and Y. Chisti (2001) Tubular photobioreactor design for algal cultures. J. Biotechnol. 92: 113-131. https://doi.org/10.1016/S0168-1656(01)00353-4
  19. Song, D., J. Fu, and D. Shi (2008) Exploitation of oilbearing microalgae for biodiesel. Chin. J. Biotechnol. 24: 341-348. https://doi.org/10.1016/S1872-2075(08)60016-3
  20. Sheehan, J., T. Dunahay, J. Benemann, and P. Roessler (1998) A look back at the U.S. Department of Energy's Aquatic Species Program: biodiesel from algae. Closeout Report, NREL/TP-580-24190.
  21. Roessler, P. G., J. L. Bleibaum, G. A. Thompson, and J. B. Ohlrogge (1994) Characteristics of the gene that encodes acetyl-CoA carboxylase in the diatom Cycbtella cryptica. Ann. N. Y. Acad. Sci. 721: 250-256. https://doi.org/10.1111/j.1749-6632.1994.tb47398.x
  22. Roessler, P. G., L. M. Brown, T. G. Dunahay, D. A. Heacox, E. E. Jarvis, J. C. Schneider, S. G. Talbot, and K. G. Zeiler (1997) Genetic engineering approaches for enhanced production of biodiesel fuel from microalgae. NREL Report.
  23. Hu, Q., M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, and A. Darzins (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54: 621-639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
  24. Davis, M. S., J. Solbiati, and J. E. Cronan (2000) Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J. Biol. Chem. 275: 28593-28598. https://doi.org/10.1074/jbc.M004756200
  25. Lu, X., H. Vora, and C. Khosla (2008) Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab. Eng. 10: 333-339. https://doi.org/10.1016/j.ymben.2008.08.006
  26. Courchesne, N. M. D., A. Parisien, B. Wang, and C. Q. Lan (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J. Biotechnol. 141: 31-41. https://doi.org/10.1016/j.jbiotec.2009.02.018
  27. Knothe, G. (2006) Analyzing biodiesel: standards and other methods. J. Am. Oil Chem. Soc. 83: 823-833. https://doi.org/10.1007/s11746-006-5033-y
  28. Gouveia, L. and A. C. Oliveira (2009) Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 36: 269-274. https://doi.org/10.1007/s10295-008-0495-6
  29. Wang, B., Y. Li, N. Wu, and C. Q. Lan (2008) CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79: 707-718. https://doi.org/10.1007/s00253-008-1518-y
  30. Skjanes, K., P. Lindblad, and J. Muller (2007) Bio$CO_2$-A multidisciplinary, biological approach using solar energy to capture $CO_2$ while producing $H_2$ and high value products. Biomol. Eng. 24: 405-413. https://doi.org/10.1016/j.bioeng.2007.06.002
  31. Raven, R. P. J. M. and K. H. Gregersen (2007) Biogas plants in Denmark: successes and setbacks. Renew. Sustain. Energ. Rev. 11: 116-132. https://doi.org/10.1016/j.rser.2004.12.002
  32. Meng, X., J. Yang, X. Xu, L. Zhang, Q. Nie, and M. Xian (2009) Biodiesel production from oleaginous microorganisms. Renew. Energy 34: 1-5. https://doi.org/10.1016/j.renene.2008.04.014