협력적 필터링 추천 시스템의 정확도 향상

Accuracy improvement of a collaborative filtering recommender system

  • 이석환 (인하대학교 산업공학과) ;
  • 박승현 (인하대학교 산업공학과)
  • 투고 : 2010.01.18
  • 심사 : 2010.03.12
  • 발행 : 2010.03.31

초록

In this paper, the author proposed following two methods to improve the accuracy of the recommender system. First, in order to classify the users more accurately, the author used a EMC(Expanded Moving Center) heuristic algorithm which improved clustering accuracy. Second, the author proposed the Neighborhood-oriented preference prediction method that improved the conventional preference prediction methods, so the accuracy of the recommender system is improved. The test result of the recommender system which adapted the above two methods suggested in this paper was improved the accuracy than the conventional recommendation methods.

키워드

참고문헌

  1. 이석환, 박승헌, 군집의 효율향상을 위한 휴리스틱알고리즘, 대한안전경영과학회, 제11권 제3호, 2009, 157-166
  2. 이재식, 박석두, 장르별 협업필터링을 이용한 영화추천 시스템의 성능 향상, 한국지능정보시스템학회, 제13권 제4호, 2007, 65-78
  3. 정경용, 이정현, 개인화 추천 시스템의 예측 정확도 향상을 위한 사용자 유사도 가중치에 대한 비교 평가, 전자공학회, 제42권 제6호, 2005, 63-73
  4. Ahn, H. J. A new similarity measure for collabo rative filtering to alleviate the new user cold-starting problem Information Sciences, 178, 2008, 37-51 https://doi.org/10.1016/j.ins.2007.07.024
  5. Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl, Item-Based Collaborative Filtering Recommendation Algorithms, Association for Computing Machinery, 2001, 285-295
  6. Badrul Sarwar, Sparsity, scalability, and distribution in recommender systems, PhD thesis, University of Minnesora, 2001
  7. Herlocker, J., Konstan, J. A., & Riedl, J. E xplaining collaborative filtering recommendation s. In ACM 2000 conference on computer-supported collaborative work, 2000, 241-250
  8. SPSS, Clementine 8.0 user's guide, SPSS, 2003
  9. MovieLens dataset, URL : http://movielens.umn.edu