The Korean Jouwrnal of Applied Statistics (2010)
23(1), 73-79

Nonstationary Time Series and Missing Data
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Abstract

Missing values for unit root processes are imputed by the most recent observations. Treating the imputed
observations as if they are complete ones, semiparametric unit root tests are extended to missing value sit-
uations. Also, an invariance principle for the partial sum process of the imputed observations is established
under some mild conditions, which shows that the extended tests bave the same limiting null distributions as
those based on complete observations. The proposed tests are illustrated by analyzing an unequally spaced
real data set. » )

Keywords: High frequency data, mvanance principle, missing value imputation, semiparametric unit root
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1. Introduction

Some finance time series are observed at high frequencies such as day or transaction-by-transaction,
see Tsay (2005, Chapter 5). For daily data sets, observations are not available on weekends and
holidays. For transaction-by-transaction data sets, transactions occur at irregular times. These
situations  produce missing observations. Also, some macro economic data sets contain missing
values due to changes of samphng frequemnes for example, from quarterly sampling to monthly
sampling. -

‘We focus our interest on nonstationary time series data sets, which are very common for economic
and financial time series. In the literature, nonstationarity for economic time series is extensively
discussed in the context of unit root, see Fuller (1996, Chapter 10) and many others. We note that
a basic probability model for modern finance analysis is Brownian motion, see Shreve. {2004) and
many others. ‘

Statistical theories and methods for nonstationary time series data are largely based on the invari-
ance principle that the partial sum processes converge in distribution to Brownian motions as the
series length increases to infinity. If missing data occur, we need a proper imputation method in
which the imputed process enjoy the invariance principle.
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In this paper, we study a simple imputation method under which missing values are imputed
by the most recent observations. The partial sum process of the imputed data has the same
limiting Brownian motion as that of the (unavailéble) complete data. This implies that the long-
run variances of the-imputed datasset.and complete data set are the same.
Therefore, statistical methods based on the invariance principle and developed for complete data
sets can also be applied to the imputed data set treating the imputed data sets as if complete
data sets. Methods for financial engineeriﬁg such as volatility estimation for Brownian motion are
still valid for the impufed data sets. Unit root tests can extend to missing situations. Related
study is by Shin and Sarkar (1996, 1998) who constructed unit root tests adopting parametric
. ARMA error structures. In this note, we impose no parametric structure for the error process
and develop semiparametric unit root tests. The proposed tests are applied to a real data set, a
transaction-by-transaction data set for IBM stock prices.

2. Imputed Process

In this section, we discuss imputation, invariance principle, and estimation of the long-run variance.
Let z: be a time series specified by ¢ = @1 + us, where u; is a zero-mean processes with finite
variance o2 > 0. The error process u; is assumed to be an a-mixing which is more general than
stationary ARMA processes. Assume that the long-run variance 0% = limg oo i?“““/&t{}jf__~1 ug) >
0 exists. According to an invariance principle, under some conditions such as C1 and C2 below, as
T — oo, we have

T 2apry S oW(r), (21
where [T'r] is the integer part of [T7],0 <r <1, % denotes convergence in distribution, and W (r)

is a standard Brownian motion.
Assume-that observations are subject to missing so that z, are available for time points 1 = t; <
ty < -+ < tpe1 < tn = T. Therefore, the set of observations is {z¢,,k = 1,2,...,n}. For each k,
the missing values z¢ for t € {tx +1, ..., tr41 — 1} are imputed by the most recent observation xs,,,
k=1, ..., n— 1. Therefore, the imputed values are

w;;«}-j:wtky i=01.., 8~ k=1,...,n-1,

where Ay = tg+1 — tr, k = 1,..., n— 1. This imputation is optimal if u; is a white noise process.
We note that this imputation is widely used in practice. For example, many asset prices reported
at regular times are in fact imputed prices, by the prices of the most recent transactions. Note that
z} is the observation if z; is observed and x; is the imputed value if z; is missing.

We can write x; as an integrated process
of =ai tug
if we define u{ as follows
* * . .
Uy, =uUg; u; =0, j=ti+1,...,82-1

urzzut1+1j----+ut2; u;=0, j=ta+1,... 831,

*
Ut, == Ut, 41+ + Ut,.
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Therefore, under some mild conditions listed below we have an invariance principle for T Qx’{Tr]

as stated in Theorem 2.1 below.

Cl. w. is a zero mean process with a positive long-run variance ¢° and satisfies sup, E e 278 < o0
for some § > 0,

C2. w; is an o-mixing with a-mixing coefficient a(m) = O(m™>) for some X > (2 + §)/9,
C3. letting A = max; <x<n Ak, we have E(A) = o(T?/23+9)),
C4. we assume MCAR(Missing Completely At Random) for the missing mechanism.

Note that C2 implies 3", a(m)'=#2+) = (" m~*/(+9) = O(1) because A5/(2 +8) > 1.
This, together with C1, guarantees the invariance principle of Herrndorf (1984) for T~ Y Qw[g-ﬂ, The
conditions C1 and C3 ensure that maxj<;<7 |z} — :] = 0,(T"/?) as shown in the proof of Theorem
2.1, leading to the invariance principle for z7(r) below.

We observe that E{A) need not to be bounded. If u; has uniformly bounded high moments with
large 0, then E(A) can be large without violating C3. If, for example, § > 6, then C3 becomes
E(A) = o(T/?). Therefore, in such case, if we collect observations with sampling intervals satisfying
E(A) = o(T/3), the imputed process still satisfy the invariance principle. Note that as § — oo,
T%/2(3+9) jncrease to T/, Therefore, if § = co as in normal case, A with E(A) = O(T*/*¢) for
some € > 0 satisfies C3.

According to C4, the probabilistic structure generating missing values is independent of the process
{X:}. This would be the usual case of the niissing situations of multiple sampling frequency data

sets and high frequency data sets discussed in Section 1. See Little and Rubin (2002) for more
about MCAR. .

Theorem 2.1. Under CI1~C4, as T — oo, T‘lﬂwi}r] 4 oW (r).

Shin (2008) showed that the long-run variance o® can be consistently estimated from the imputed
data. Let ‘

T 4 T
k2D —1 *2 rp—1 * ok
ore=T 5_ ug + 2T E E Ut Uty
ta=l ra=l fmmrebl

where £ is a given nonnegative integer called bandwidth. Theorem 2.2 below establishes consistency
of 833, for which we need more conditions than C1~C4. The conditions are that u; has bounded
2(2+46) moment for some § > 0, an order condition is imposed on A, and a rate condition is imposed
on £. These conditions are not binding ones for practical use.

Theorem 2.2.  Under some regularity conditions, as T — 0o, 645 — o2 in probability.

The estimator 645 is not always nonnegative. Bartlett modification

I4

T T
R Zuz& +21r7t Z (1 - %) Z uruy_,
=1

T=1 t=7+1

is always nonnegative. Note that the estimators 633 and &3% are constructed from the imputed data

set {zf,t =1,...,T} in the same way as the usual complete data estimators 62, = 7! 23—1 u? +
—1 T — — T — -

2T Y Y Uity and 7 = T 0 W + 2T Y (1 -7/ O, wur—, are
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constructed. from the complete data set {z:,t = 1,...,T}. Therefore, together with Theorem 2.1,
statistical methods for unit root processes such as unit root test, cointegration test, and regression
for in_tegratéd time series can extend to missing data situations. In the following section, we choose
unit root test for more detailed investigation. :

3. Applications to Unit Root Test

We apply the results of Section 2 to construct serriiparametric unit root tests. Two cases are
considered. The first case tests the null hypothesis of unit root and the second case tests the

alternative hypothesis of unit root.

Consider a mean model, z; = p + pz¢—1 + u, where u,; is an error process satisfying C1~C3. We
are interested in testing the null hypothesis of nonstationarity Ho : p = 1. The semiparametric tests
of Phillips {1987) and Phillips and Perron (1988) allow simple extensions to missing data cases. An
estimator of p is p = (Zf 2 #2,)” I(Zf;z Zi_yE7), where Zf = zf — ¥ is the demeaned process
and #* = T} Zf_ﬂ z7. According to Theorem 2.1, as in Phillips (1987) for complete data case,
under Hy, as T — oo, .

T(-1) { / W (r)dw (r) + 0.57——2% } / / W2(r)dr
tp = i{p) {/ WdW+052———} {/ Wz('r}d'r} ,

and

where

W) =we) - [ W, se(p) = (*2/ ; fc:_l) ,
. 2

b=
T T
*2 . -1 * * 2 AXD - * * 2
Oy =P ‘hm T E E(.’L‘t “‘Z't_.]} ) &y ENE E (Z’t “".’L’t._l) .
Treo t=2 =2

Applying the procedure of Phillips and Perron (1988} to the imputed data set, we construct the
following Z-tests

Z(p) =T(p—1) —é/ <T‘12T::EZ2), Z(t;) = (

t=1

)tﬁ —9/ (ngT 12”‘2)

where 6 = 0.5(6%, — 63%), where

65 =T"" Z(-’ﬂt—xt 1)+ 2T 12 Z (@i = 2l )@imr = Tioaor).

r=11t=r+1

Tharks to Theorems 2.1, 2.2, the proposed tests have the standard limiting null distributions

2(3) /01 WdW//O1 W(r)dr, Z(t5) 4 /01 waw / {/01 Wz(r)dr}%
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Figure 1. B Stack Price (Nov, 1, 1920)
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Figure 4.1. IBM stock price

It is obvious that the previous discussion in this section extends to the trend model z; = u + St +
pxe-1 + ur. The Z-statistics for the trend model constructed from the imputed data set have the
same standard limiting null distribution as those constructed from the complete data set.

Consider, next, g = v + 2t, vs = vs_1 + ws, where z and w; are independent zero-mean stationary
processes with positive long-run variances with var(w;) = o%. We are interested in testing the
null hypothesis Hy : o2 = 0 of stationarity of y; against the alternative hypothesis Hy : 02 > 0
of nonstationarity. Kwiatkowski et al. (1992) proposed a locally best invariant test given by S =
T2 le xz /(T3 y2), where z; = ' ys. We extend the test to a situation in which some
of y; are missing. If y; is missing, then it’s imputed value is y; = 0. Otherwise, y; = . Let
xzf =3, yi. The test of Kwiatkowski et al. (1992), applied to the imputed observations, is

s=1
T *2
2 z
S=T" E D]
t=

4
1 9T

and has the standard limiting null distribution fol W?2(r)dr, where

T £ T
STe=T 'Y 2 +2T7' Y > iy
t=1

T=1 t=T141

4. Example

We analyze an IBM stock price data set discussed in Tsay (2005, Chapter 5). The data set contains
transaction times and transaction prices for all transactions of IBM stock for the period between
November 1, 1990 and January 31, 1991. We select the data for the first day, November 1, 1990,
which is depicted in Figure 4.1. Transaction began at 9:30AM and ended at 4:00 PM. The time
unit is second. Time index varies from 0 to (3600sec/hour) * (6.5hours/day) = (23400seconds/day).
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Total number of transaction is 757. As seen in Figure 4.1, transactions occurred at unequally spaced
time intervals. For example, the first four transactions occurred at ¢t = 1,9,10,15.

We are interested in testing whether the first day local behavior of the stock price, z; say, is governed
by a unit root or not. This would be a basis for further. analysis of the stock price. For example,
one-day local volatility o4 = \/var(zr — o) can be estimated by v/T&5, if z; is a unit root process.
This issue is addressed by considering a model z; = u + pxi—1 + us and testing Hp : p= 1.

We computed 3% using 4 bandwidth values £ = Ly = [k(T/100)°%%], which are 7, 15, 31, 46 for
k = 1,2,3,4, respectively. This bandwidth selection is common in semiparametric econometric
analysis. We have Z(i;) = —2.026,—-2.251, -2.573, —2.767 for { = L1, Lz, L3, L4, respectively,
neither of which are significant at 5% level. We therefore conclude that the within-day dynamic for
IBM stock price is a unit root process. From this fact, we can estimate one-day local volatility o4
by VT5%,, which are 2.025, 1.823, 1.594, 1.483 for £ = L1, L3, L3, L4 respectively.
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Appendix: Proofs

Proof of Theorem 2.1. For each ¢, we can find k € {1,..., n} and h € {0,1,...,Ar — 1} such
that ¢ = ¢ + h. Let rp = 2;;1 Ut,+j. Then zy — a2} = r;. Because of (2.1), if we show
T2 max; ;<7 |re] — 0 in probability, then Theorem 4.1 of Billinsley (1968) with the metric
d(zr,7) = Supg<,<y |%(Tr — Z{r,y| = maxi<e<r || is applicable to yield the desired result. Not-
ing that Ar < A for all &, we have

ZUzw

Let B the o—algebra generated by {tx,k = 1,2,...}. Let ¢ > 0 be given. We have

h
> e

A

> et
j=1

A

Z Utp+i <

i=1

max |r¢| = max = max max  max
1<t<T 0<h<A-—1

max
1Li<T 1<k<n 0<h<AL—1 l<k<n 0<hLA-1

>T%€ B

P{T b max m|>e‘B}<P[

1<6<T O<h<A 1
—~1
Jore
P[zum

]

g

l>

>T26B

IA

M 1M
=

CJ

> T3¢ by C4 of MCAR

i

NI

o
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s

I

246

>

P

by the Chebychev's inequality

E Uttj

j=1

IA
e

i

1 h=0
T A-—1
VAR P Cas) SN ntt ZEWH.JP” by the Holder inequality,

i=1 h=0 =1

A

< Vi P Z h2+6 sup ) Elu |,
h=0
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Taking expectation with respect to {tx, k= 1,2,...},

-1 -3 _(249) 345 245 _
P [T 2 lxgaéxT Ire] > e] <7T ze¢ o (E (A )) SltlpEWtf =o(1), by C1 and C3,

we get T™/2 maxi<;<r |rs] — 0 in probability.

Proof of Thearem 2.2. A proof is given in Shin (2008).
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