DOI QR코드

DOI QR Code

Evidence of Taylor Property in Absolute-Value-GARCH Processes for Korean Financial Time Series

Absolute-Value-GARCH 모형을 이용한 국내 금융시계열의 Taylor 성질에 대한 사례연구

  • Baek, J.S. (Department of Statistics, Sookmyung Women's University) ;
  • Hwang, S.Y. (Department of Statistics, Sookmyung Women's University) ;
  • Choi, M.S. (Department of Statistics, Sookmyung Women's University)
  • 백지선 (숙명여자대학교 통계학과) ;
  • 황선영 (숙명여자대학교 통계학과) ;
  • 최문선 (숙명여자대학교 통계학과)
  • Received : 20091100
  • Accepted : 20091200
  • Published : 2010.02.28

Abstract

The time series dependencies of Financial volatility are frequently measured by the autocorrelation function of power-transformed absolute returns. It is known as the Taylor property that the autocorrelations of the absolute returns are larger than those of the squared returns. Hass (2009) developed a simple method for detecting the Taylor property in absolute-value-GAROH(1,1) (AVGAROH(1,1)) model. In this article, we fitted AVGAROH(1,1) model for various Korean financial time series and observed the Taylor property.

금융시계열 변동성의 의존성(dependency)은 멱변환된 절대수익률의 자기상관함수를 이용하여 측정할 수 있다. 이때, 절대수익률의 자기상관이 제곱수익률의 자기상관보다 더 강하게 나타나는 성질을 Taylor 성질이라고 한다. 본 논문에서는 여러 가지 국내 금융시계열 자료에 대하여 absolute-value GARCH(1,1)(AVGARCH(1,1)) 모형을 적합하고, Haas (2009)가 제안한 방법을 이용하여 Taylor 성질의 존재여부에 대하여 살펴보았다.

Keywords

References

  1. Baillie, R. T., Bollerslev, T. and Mikkelsen, H. -O. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 74, 3-30. https://doi.org/10.1016/S0304-4076(95)01749-6
  2. Goncalves, E., Leite, J. and Mendes-Lopes, N. (2009). A mathematical approach to detect the Taylor property in TARCH pocesses, Statistics & Probability Letters, 79, 602-610. https://doi.org/10.1016/j.spl.2008.10.006
  3. Granger, C. W. J. (2005). The past and future of empirical finance: Some personal comments, Journal of Econometrics, 129, 35-40. https://doi.org/10.1016/j.jeconom.2004.09.002
  4. Granger, C. W. J. and Ding, Z. (1995). Some properties of absolute return, an alternative measure of risk, Annales D’economie et de Statistique, 40, 67-91.
  5. Haas, M. (2009). Persistence in volatility, conditional kurtosis, and the Taylor property in absolute value GARCH processes, Statistics & Probability Letters, 79, 1674-1683. https://doi.org/10.1016/j.spl.2009.04.017
  6. He, C. and Terasviyrta, T. (1999). Properties of moments of a family of GARCH processes, Journal of Econometrics, 92, 173-192. https://doi.org/10.1016/S0304-4076(98)00089-X
  7. Hwang, S. Y. and Basawa, I. V. (2004). Stationarity and moment structure of Box-Cox transformed threshold GARCH(1,1) processes, Statistics & Probability Letters, 68, 209-220. https://doi.org/10.1016/j.spl.2003.08.016
  8. Ling, S. and McAleer, M. (2002). Stationarity and existence of moments of a family of GARCH processes, Journal of Econometrics, 106, 109-117. https://doi.org/10.1016/S0304-4076(01)00090-2
  9. Taylor, S. J. (1986). Modelling Financial Time Series, John Wiley & Sons, Chichester.