광산배수 자연정화시설 내 버섯퇴비의 중금속 흡착능력 평가

Assessment of Adsorption Capacity of Mushroom Compost in AMD Treatment Systems

  • Yong, Bo-Young (Korea Institute of Geoscience and Mineral Resources) ;
  • Cho, Dong-Wan (Department of Environmental Engineering, Yonsei University) ;
  • Jeong, Jin-Woong (Department of Geology and Earth Environmental Science, Choongnam University) ;
  • Lim, Gil-Jae (Korea Institute of Geoscience and Mineral Resources) ;
  • Ji, Sang-Woo (Korea Institute of Geoscience and Mineral Resources) ;
  • Ahn, Joo-Sung (Korea Institute of Geoscience and Mineral Resources) ;
  • Song, Ho-Cheol (Korea Institute of Geoscience and Mineral Resources)
  • 발행 : 2010.02.28

초록

휴 폐 광산으로부터 유출되는 산성광산배수는 낮은 pH와 다량의 중금속 이온을 포함하고 있어 지하수·하천 오염 및 주변 환경 파괴의 원인이 되고 있다. 본 연구는 자연정화시설에서 기질물질의 흡착 특성 평가에 중점을 두었다. 이를 위해 버섯퇴비에 의해 광미로부터 용출된 중금속이 흡착 처리 되는 과정에서 황산염환원균의 영향을 파악하였고, $Cd^{2+}$, $Cu^{2+}$, $Pb^{2+}$, $Zn^{2+}$을 포함한 인공 광산배수와 버섯퇴비를 반응시켜 중금속 흡착 처리 효율 평가 및 등온흡착곡선에 관해 고찰하였다. 연구 결과 광미에서 용출된 Mn은 미생물 혹은 흡착에 의한 안정화가 이루어지지 않은 것으로 나타났으며. Zn의 경우 황산염환원균에 의한 제거 기작이 중요한 역할을 하고 있음을 보여주었다. Fe는 미생물을 제거한 경우보다 미생물이 존재할 경우 다량의 Fe가 용출되었으며 이는 철환원박테리아가 $Fe^{3+}$를 소모함에 따라 Fe를 포함한 광물이 용해되어 용출되었기 때문이라고 추측된다. 버섯퇴비 투여 시 산화환원전위 (Oxidation Reduction Potential) 와 pH 측정을 통해 환원 환경 및 중성 환경이 조성됨을 확인 할 수 있었다. 인공 광산배수를 사용한 흡착실험결과 pH 6 조건에서 버섯퇴비의 중금속 흡착 효율이 90% 이상으로 매우 높게 나타났으며, pH 3 조건에서는 보다 낮은 흡착 효율을 보였다.

Acid mine drainage (AMD) from abandoned mine sites typically has low pH and contains high level of various heavy metals, aggravating ground- and surface water qualities and neighboring environments. This study investigated removal of heavy metals in a biological treatment system, mainly focusing on the removal by adsorption on a substrate material. Bench-scale batch experiments were performed with a mushroom compost to evaluate the adsorption characteristics of heavy metals leached out from a mine tailing sample and the role of SRB in the overall removal process. In addition, adsorption experiments were perform using an artificial AMD sample containing $Cd^{2+}$, $Cu^{2+}$, $Pb^{2+}$ and $Zn^{2+}$ to assess adsorption capacity of the mushroom compost. The results indicated Mn leached out from mine tailing was not subject to microbial stabilization or adsorption onto mushroom compost while microbially mediated stabilization played an important role in the removal of Zn. Fe leaching significantly increased in the presence of microbes as compared to autoclaved samples, and this was attributed to dissolution of Fe minerals in the mine tailing in a response to the depletion of $Fe^{3+}$ by iron reduction bacteria. Measurement of oxidation reduction potential (ORP) and pH indicated the reactive mixture maintained reducing condition and moderate pH during the reaction. The results of the adsorption experiments involving artificial AMD sample indicated adsorption removal efficiency was greater than 90% at pH 6 condition, but it decreased at pH 3 condition.

키워드

참고문헌

  1. Bhatnagar, A., Kumar, E., Minocha, A.K., Jeon, B.H., Song, H. and Seo, Y.-C. (2009) Removal of anionic dyes from water using Citrus Limonum (lemon) peel: Equilibrium studies and kinetic modeling. Separation Sci. and Technol., v.44, p.316-334 https://doi.org/10.1080/01496390802437461
  2. Brenner, F.J. (2001) Use of constructed wetlands for acid mine drainage abatement and stream restoration. Water Sci. and Technol., v.44, p.449-454.
  3. Chang, I.S., Shin, P.K. and Kim, B.H. (2000) Biological treatment of acid mine drainage under sulfate-reducing conditions with solid waste materials as substrate. Water Res., v.34, p.1269-1277. https://doi.org/10.1016/S0043-1354(99)00268-7
  4. Cheong, Y.W., Min, J.S., Kwon, K.S. and Lee, H.J. (1997) An evaluation of substrates for the developments of constructed wetland treatment of acid mine drainage. The Korea Society for Geosystem Eng., v.34, p.142- 151.
  5. Christensen, B., Laake, M. and Lien, T. (1996) Treatment of acid mine water by sulfate-reducing bacteria. Results from a bench scale experiment. Water Res., v.30, p.1617-1624. https://doi.org/10.1016/0043-1354(96)00049-8
  6. Dvorak, D.H., Hedin, R.S., Edenborn, H.M. and Mcintire, P.E. (1992) Treatment of metal-contaminated water using bacterial sulfate reduction: Results from pilotscale reactors. Biotech. Bioeng., v.40, p.609-616. https://doi.org/10.1002/bit.260400508
  7. Gazea, B., Adam, K. and Kontopoulos, A. (1996) A review of passive systems for the treatment of acid mine drainage. Minerals Eng., v.9, p.23-42. https://doi.org/10.1016/0892-6875(95)00129-8
  8. Hammack, R.W., Edenborn, H.M. and Dvorak D.H. (1994) Treatment of water from an open-pit copper mine using biogenic sulfide and limestone: A feasibility study. Water Res. v.28, p.2321-2329. https://doi.org/10.1016/0043-1354(94)90047-7
  9. Hedin. R.S. (1996) Environmental engineering forum: Long-term effects of wetland treatment of mine drainage. J. Environ. Eng., v.122 (1), p.83-86. https://doi.org/10.1061/(ASCE)0733-9372(1996)122:1(83)
  10. Kim, G.M., Hur, W. and Baek, H.J. (2008) Treatment of acid mine drainage using immobilized beads carrying sulfate reducing bacteria. Econ. Environ. Geol., v.41, p.57-62
  11. Lee, S.H. (2003) A study on the actibity of sulfate reducing bacteria in successive alkalinity production system. Master thesis, Hanyang university, Korea, 90p.
  12. Neculita, C.M. and Zagury, G.J. (2008) Biological treatment of highly contaminated acid mine drainage in batch reactors: Long-term treatment and reactive mixture characterization. J. Haz. Mater., v.157, p.358- 366 https://doi.org/10.1016/j.jhazmat.2008.01.002
  13. Quan, Z.X., La, H.J., Cho, Y.G. and Lee, S.T. (2000) Treatment of acidic heavy metal-contaminated water using cow manure and microbial granule. J. Korean Society of Environ. Eng. v.22, p.1397-1406
  14. Shelp, G.S., Chesworth, W. and Spiers, G. (1995) The amelioration of acid mine drainage by an in situ electrochemical method; Part 1: Employing scrap iron as the sacrificial anode. Appl. Geochem., v.10, p.705-713. https://doi.org/10.1016/0883-2927(95)00055-0
  15. Shelp, G.S., Chesworth, W. and Spoers, G. (1996) The amelioration of acid mine drainage by an in situ electrochemical method; Part 2: Employing aluminium and zinc as sacrificial anodes. Appl. Geochem., v.11, p.425-432. https://doi.org/10.1016/S0883-2927(96)00015-7
  16. Waybrant, K.R., Ptacek, C.J. and Blowes, D.W. (2002) Treatment of mine drainage using permeable reactive barriers: Column experiments. Environ. Sci. Technol., v.36, p.1349-1356. https://doi.org/10.1021/es010751g