온라인 지문 인식 시스템을 위한 지문 품질 측정

Fingerprint Image Quality Assessment for On-line Fingerprint Recognition

  • 이상훈 (연세대학교 생체인식 연구센터)
  • Lee, Sang-Hoon (Biometrics Engineering Research Center, Yonsei Univ.)
  • 발행 : 2010.03.25

초록

온라인 지문 인식 시스템에서는 주변 환경, 사용자의 지문 상태 및 입력 방법에 따라 다양한 품질의 지문이 입력된다. 따라서 지문 인식 시스템의 성능을 향상시키기 위해서는, 입력된 지문 영상을 이용하여 본인과 타인간의 변별력을 높이는 연구뿐만 아니라 다양한 품질의 지문 영상들 중에서 품질이 좋은 지문 영상을 선택하여 이를 인식에 사용하는 연구도 병행이 되어야 한다. 하지만 대부분의 기존 연구에서는 지문의 지역적인 품질만을 측정하였기 때문에 한 장의 지문영상의 품질에 대한 예측은 거의 이루어지지 않았다. 따라서 본 논문에서는 획득된 지문 영상의 품질을 판단하기 위해서 지역적인 지문 품질 측정과 이를 통한 전역적 지문 품질 측정 방볍을 제안하였다. 지역적인 지문 품질 평가에서는 각 지문 블록에서 그레디언트(Gradient)의 확률 밀도 함수(Probability Density Function)의 형태를 측정하여 블록 별 품질 값을 예측하였고, 이를 기반으로 전역적인 품질 평가에서는 신경망(Neural network)올 사용하여 지문 영상 전체를 평가함으로써 입력된 영상의 사용 여부를 판단하였다. FVC2002 데이터베이스를 사용하여 실험한 결과, 제안한 전역적 방법을 사용하였을 때 NFIQ(NIST Fingerprint Image Quality)의 방법보다 정합 예측 성능이 높게 나타난 것올 확인할 수 있었다.

Fingerprint image quality checking is one of the most important issues in on-line fingerprint recognition because the recognition performance is largely affected by the quality of fingerprint images. In the past, many related fingerprint quality checking methods have typically considered the local quality of fingerprint. However, It is necessary to estimate the global quality of fingerprint to judge whether the fingerprint can be used or not in on-line recognition systems. Therefore, in this paper, we propose both local and global-based methods to calculate the fingerprint quality. Local fingerprint quality checking algorithm considers both the condition of the input fingerprints and orientation estimation errors. The 2D gradients of the fingerprint images were first separated into two sets of 1D gradients. Then,the shapes of the PDFs(Probability Density Functions) of these gradients were measured in order to determine fingerprint quality. And global fingerprint quality checking method uses neural network to estimate the global fingerprint quality based on local quality values. We also analyze the matching performance using FVC2002 database. Experimental results showed that proposed quality check method has better matching performance than NFIQ(NIST Fingerprint Image Quality) method.

키워드

참고문헌

  1. A. Jain, A. Ross, and S. Prabhakar, "An Introduction to Biometric Recognition", IEEE Trans. Circuit and Systems For Video Technology, Vol. 14, No.1, pp. 4-20, Jan. 2004. https://doi.org/10.1109/TCSVT.2003.818349
  2. A. Jain, L. Hong, and R. Bolle, "On-line fingerprint verification", IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 19, no. 4, pp.302-314, Apr. 1997. https://doi.org/10.1109/34.587996
  3. L. Hong, Y.Wan, and A. Jain, "Fingerprint image enhancement: Algorithm and performance evaluation," IEEE Transaction Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp. 777-789, Aug. 1998. https://doi.org/10.1109/34.709565
  4. M. Yao, S. Pankanti, N. Haas, N. Ratha, and R. Bolle, "Quantifying quality: A case study in fingerprints," in Proc. IEEE Automatic Identification Advanced Technologies, pp. 126-131, Mar. 2002.
  5. R. Bolle, S. Pankanti, and Y. Yao, "System and method for determining the quality of fingerprint images," U.S. Patent US 5 963 656, Oct. 1999.
  6. L. Shen, A.Kot, and W. Koo, "Quality measures of fingerprint images," in Proc. 3rd Int. Conf. Audio- and Video-based Biometric Person Authentication, pp. 266-271, Jun. 2001.
  7. N. Ratha and R. Bolle, "Fingerprint image quality estimation," IBM Comput. Sci. Res., Rep. No. RC21622, 1999.
  8. E. Lim, X. Jiang, and W. Yau, "Fingerprint quality and validity analysis," in Proc. IEEE Int. Conf. Image Processing, vol. 1, pp. 469-472, Sep. 2002.
  9. T. Chen, X. Jiang, and W. Yau, "Fingerprint image quality analysis," in Proc. Int. Conf. Image Process, pp. 1253-1256, 2004.
  10. E. Tabassi, C. Wilson, and C. Watson, "Fingerprint image quality," National Institute of Standards and Technology, NISTIR7151, Aug. 2004.
  11. E. Tabassi and C. Wilson, "A novel approach to fingerprint image quality," in Proc. Int. Conf. Image Processing, vol. 2, pp. 37-40, 2005.
  12. S. H. Lee, H. S. Choi, K. T. Choi, J. H. Kim, "Fingerprint-Quality Index Using Gradient Components" in IEEE Trans. Information Forensics and Security, Vol. 3, no. 4, pp. 792-800, Dec. 2008. https://doi.org/10.1109/TIFS.2008.2007245
  13. S. H. Lee, C. H. Lee, and J. H. Kim, "Modelbased quality estimation of fingerprint images," in Proc. IAPR Int. Conf. Biometrics, ser. Lect. Notes Comput. Sci. 3832. New York: Springer, pp. 229-235, Jan. 2006.
  14. A. Hyvarinen, J. Karhunen and E. Oja, "Independent Component Analysis", John Wiley and Sons. Inc, 2001.
  15. D. Maio and D. Maltoni, "Ridge-line density estimation in digital images," in Proc. Int. Conf. Pattern Recognition, Australia, Aug. 1998.
  16. K. Mardia, A. Baczkowski, X. Feng, T. Hainsworth, "Statistical Methods for Automatic Interpretation of Digitally Scanned Fingerprints",Internal Report STAT 97/23, 12, 1997.
  17. X. Feng, P. Milanfar, "Multiscale Principal Components Analysis for Image Local Orientation Estimation", The 36th Asilomar Conference on Signals, Systems and Computers, 2002.
  18. Jinwei Gu, Jie. Zhou, David Zhang, "A combination model for orientation field of fingerprints", Pattern recognition, vol. 37, pp. 543-553, 2004. https://doi.org/10.1016/S0031-3203(03)00178-X
  19. A. Almansa and T. Lindeberg, "Fingerprint enhancement by shape adaptation of scale-space operators with automatic scale-selection," IEEE Trans. Image Process., vol. 9, no. 12, pp. 2027-2042, Dec. 2000. https://doi.org/10.1109/83.887971
  20. D. Maio and D. Maltoni, "Direct gray-scale minutiae detection in fingerprints," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 1, pp. 27-40, Jan. 1997. https://doi.org/10.1109/34.566808
  21. J.Weickert, "Coherence-enhancing diffusion filtering," Int. J. Comput. Vis., vol. 31, pp. 111-127, 1999. https://doi.org/10.1023/A:1008009714131
  22. JOY A. THOMAS, "Elements of Information Theory" John Wiley & Sons Inc, 1991.
  23. FVC2002, http://bias.csr.unibo.it/fvc2002