Abstract
A finger language helping hearing impaired people in communication A sign language helping hearing impaired people in communication is not popular to ordinary healthy people. In this paper, we propose a method for real-time sign language recognition from a vision system using color information and fuzzy clustering system. We use YCbCr color model and canny mask to decide the position of hands and the boundary lines. After extracting regions of two hands by applying 8-directional contour tracking algorithm and morphological information, the system uses FCM in classifying sign language signals. In experiment, the proposed method is proven to be sufficiently efficient.