References
- Beer, J. R. F. and Sizer, I. W. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chemist. 195:133-140.
- Beyer, W. F. and Fridovich, Y. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry 151:559-566.
- Blikhina, E., Virolainen, E. and Fagerstedt, K. V. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals Botany 91:179-194. https://doi.org/10.1093/aob/mcf118
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Analyt Biochem 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Choudhary, M., Jetley, U. K., Khan, M. A., Zutshi, S. and Fatma, T. 2007. Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotox Environ Safety 66:204-209. https://doi.org/10.1016/j.ecoenv.2006.02.002
- Davies, F. T., Puryear, J. D., Newton, R. J., Egilla, J. N. and Grossi, J. A. S. 2002. Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange. J Plant Nutr 25:389-407.
- Diwan, H., Ahmad, A. and Iqbal, M. 2008. Genotypic variation in the phytoremediation potential of Indian mustard for chromium. Environ Management 41:734-741. https://doi.org/10.1007/s00267-007-9020-3
- Dixit, V., Pandey, V. and Shyam, R. 2002. Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L.cv. Azad) root mitochondria. Plant Cell Environ 25:687-693. https://doi.org/10.1046/j.1365-3040.2002.00843.x
- Ernst, W. H. O. and Nelissen, H. J. M. 2000. Life-cycle phases of a zinc- and cadmium-resistant ecotype of Silene vulgaris in risk assessment of polymetallic mine soils, Environmental Pollution 97:29-338.
- Foyer, C. H., Deascouveries, P. and Kunert, K. J. 1994. Protection against oxygen radicals: important defense mechanisms studied in transgenic plants. Plant Cell Environ 17:507-523. https://doi.org/10.1111/j.1365-3040.1994.tb00146.x
- Gwozdz, E. A., Przymusinski, R., Rucinska, R. and Deckert, J. 1997. Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol Plantarum 19:37-42.
- Huffman, E. W. D. and Allaway, W. H. 1972. Growth of plants in solution culture containing low levels of chromium. Plant Physiology 52:72-75.
- Islam, K.S., Rahman M.M. and Laura E. H. E. 2009. Pollution status and sustainable management of Xiamen Bay in China: a brief review, Int J Ocean Syst Management 1:155-168. https://doi.org/10.1504/IJOSM.2009.030182
- Kanazawa, S., Sano, S., Koshiba, T. and Ushhimaru, T. 2000. Changes in antioxidants in cucumber cotyledons during natural senescence: comparison with those during dark-induced senescence, Physiol Plant 109:211-216. https://doi.org/10.1034/j.1399-3054.2000.100214.x
- Kang, K. S., Lim, C. J., Han, T. J., Kim, J. C. and Jin, C. D. 1999. Change in the isozyme composition of antioxidant enzymes in response to aminotriazole in leaves of Arabidopsis thaliana. J Plant Biology 42:187-193. https://doi.org/10.1007/BF03030477
- Kathiresan, K. and Bingham, B. L. 2001. Biology of mangroves and mangrove ecosystems. Adv in Mar Biology 40:81-251. https://doi.org/10.1016/S0065-2881(01)40003-4
- Kosugi, H. and Kikugawa, K. 1985. Thiobarbituric acid reaction of aldehyes and oxidized lipids in glacial acetic acid, Lipids. 20: 915-920. https://doi.org/10.1007/BF02534777
- Liu, D., Zou, J., Wang, M. and Jiang, W. 2008. Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defense system and photosynthesis in Amaranthus viridis L. Bioresource Technology 99:2628-2636. https://doi.org/10.1016/j.biortech.2007.04.045
- Luna, C. M., Gonzalez, V. S. and Trippi, V. S. 1994. Oxidative damage caused by excess copper in oat leaves. Plant Cell Physiology 35:11-15.
- Panda, S. K. and Choudhury. S. 2005. Chromium stress in plants. Bra J Plant Physiology 17:95-102. https://doi.org/10.1590/S1677-04202005000100008
- Rahman, M. M., Chongling, Y., Islam, K. S. and Lu, H. 2009. A brief review on pollution and ecotoxicologic effect on Sundarbans mangrove wetland in Bangladesh. Int J Environ Engineering 1: 368-385.
- Shanker, A. K., Cervantesb, T., Loza-Taverac, H. and Avudainayagam, S. 2005. Chromium toxicity in plants. Environment International 31:739-753. https://doi.org/10.1016/j.envint.2005.02.003
- Sharma, D. C., Sharma, C. P. and Tripathi R. D. 2003. Phytotoxic lesions of chromium in maize. Chemosphere. 51:63-68. https://doi.org/10.1016/S0045-6535(01)00325-3
- Sinha, S., Saxena, R. and Singh, S. 2005. Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes. Chemosphere 58:595-604. https://doi.org/10.1016/j.chemosphere.2004.08.071
- Sokola, E. V., Nigmatulinaa, E. N. and Nokhrin D. Yu. 2010. Dust emission of chromium from chromite ore processing residue disposal areas in the vicinity of Krasnogorskii village in chelyabinsk oblast. Contemporary Problems of Ecology 3:621-630. https://doi.org/10.1134/S1995425510060020
- Tewari, P., Kumar, P. N., Sharma, P. N. and Bisht, S. S. 2002. Modulation of oxidative stress responsive enzymes by excess cobalt. Plant Science 162:381-388. https://doi.org/10.1016/S0168-9452(01)00578-7
- Vajpayee, P., Rai, U. N., Ali, M. B., Tripathi R. D., Yadav, V., Sinha, S. and Singh, S. N. 2002. Chromium-induced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent. Bul Environ Conta Toxicology 67:246-256.
- Vitoria, A. P., Lea, P. J. and Azevedo, R. A. 2001. Antioxidant enzyme responses to cadmium in radish tissues. Phytochemistry 57:701-710. https://doi.org/10.1016/S0031-9422(01)00130-3
- Zhang, F. Q. Wang, Y. S. and Lou, Z. P. 2007. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44-50. https://doi.org/10.1016/j.chemosphere.2006.10.007