DOI QR코드

DOI QR Code

Analyses of Behaviors of a Shape-Memory-Alloy Torque Tube Actuator

형상기억합금 비틀림 튜브 작동기의 거동 해석

  • Kim, Jun-Hyoung (Dept. of Mechanical Engineering, Kyungpook Nat'l Univ.) ;
  • Kim, Cheol (Dept. of Mechanical Engineering, Kyungpook Nat'l Univ.)
  • 김준형 (경북대학교 기계공학부) ;
  • 김철 (경북대학교 기계공학부)
  • Received : 2010.03.17
  • Accepted : 2010.06.08
  • Published : 2010.08.01

Abstract

Shape memory alloys (SMAs) are smart materials. The unique characteristics of SMAs enable the production of large force and displacement. Hence, SMAs can be used in many applications such as in actuators and active structural acoustic controllers; the SMAs can also be used for dynamic tuning and shape control. A SMA torque tube actuator consisting of SMA tubes and superelastic springs is proposed, and the behaviors of the actuator are investigated. From the results of heat transfer analysis, it is proved that the SMA torque tube actuator with both resistive heating of SMA itself and a separate conventional heating rod in the tube core has good performance. The behavior of an actuator system was analyzed by performing a contact analysis, and the twisting motion was noticed when checking the actuation. 3D SMA nonlinear constitutive equations were formulated numerically and implemented by performing a nonlinear analysis by using Abaqus UMAT.

형상기억합금은 지능형 재료와 구조물에 널리 쓰인다. 큰 힘과 변위를 발생시키는 것이 특징이며 작동기, 소음 및 진동감쇠, 동역학적 튜닝, 형상의 변형 제어 등의 다양한 분야에 응용될 수 있다. 본 논문에 서는 형상기억합금튜브와 초탄성 스프링으로 구성된 형상기억합금 비틀림 작동기를 제안하였고 각각의 거동 특성을 알아보았다. 열전달 해석을 통해 저항열과 히터의 열을 동시에 형상기억합금튜브에 가하면 작동기의 성능을 더 향상시킬 수 있음을 확인하였다. 접촉 해석으로는 실제 작동기의 거동을 시뮬레이션하였고 정상적으로 작동함을 알 수 있었다. 3 차원 형상기억합금의 거동을 표현하기 위해 비선형 구성방정식을 유한요소 법으로 풀고 ABAQUS 의 U-MAT 기능을 이용하여 비선형 해석을 수행하였다.

Keywords

References

  1. Reisner, G., Werner, E. A. and Fischer, F. D., 1998, "Micromechanical Modeling of Martensitic Transformation in Random Microstructures," International Journal of Solids and Structures, Vol. 19, pp. 2457-2473.
  2. Boyd, J. G. and Lagoudas, D. C., 1996, "A Thermodynamic Constitutive Model for the Shape Memory Alloy Materials, Part I : The Monolithic Shape Memory Alloys," International Journal of Plasticity , Vol. 12, pp. 805-842. https://doi.org/10.1016/S0749-6419(96)00030-7
  3. Roh, J. H., Han, J. H., Lee, I., 2006, "Nonlinear Finite Element Simulation of Shape Adaptive Structures with SMA Strip Actuator," Journal of Intelligent Material Systems and Structures, Vol. 17, pp. 1007-1022. https://doi.org/10.1177/1045389X06063084
  4. Kim, C., Park, B., Goo, N. S., 2002, "Shape Changes by Coupled Bending and Twisting of SMA-Embedded Composite Beams," Smart Materials and Structures, Vol. 11, pp.519-526. https://doi.org/10.1088/0964-1726/11/4/306
  5. Hill, J., Roh, J. H., Wang, K. W., 2009, "Position Control of Shape Memory Alloy Actuators with Load and Frequency Dependent Hysteresis Characteristics," SPIE International symposium Smart Structures and Materials, 2009
  6. Reynaerts D., Van B. H., 1998, "Design Aspects of Shape Memory Actuators," Mater Design, Vol. 23, No. 1, pp.11-19.
  7. Fukuda, T., Hosokai, H., Kikuchi, I., 1991, "Distributed Type of Actuators by Shape Memory Alloy and Its Application to Underwater Mobile Robotic Mechanism," Proceeding of Robotic Automa, Vol. 2, pp.1316-1321
  8. Bo, Z. and Lagoudas, D. C., 1999, "Thermo-Mechanical Modeling of Polycrystalline SMAs Under Cyclic Loading, Part I: Theoretical Derivations", International Journal of Engineering Science, Vol. 37, pp. 1809-1140. https://doi.org/10.1016/S0020-7225(98)00113-X
  9. Bo, Z. and Lagoudas, D. C., 1999, "Thermo-Mechanical Modeling of Polycrystalline SMAs Under Cyclic Loading," Part III, International Journal of Engineering Science, Vol. 37, pp.1175-1203. https://doi.org/10.1016/S0020-7225(98)00115-3
  10. Truesdell, C. and Noll, W., 1965, The Non-linear Field Theories of Mechanics, Springer : Berlin