DOI QR코드

DOI QR Code

Design and Optimization of Intelligent Service Robot Suspension System Using Dynamic Model

동역학 모델을 활용한 서비스용 지능형 로봇의 현가 시스템 설계 및 최적화

  • Received : 2009.03.16
  • Accepted : 2010.06.16
  • Published : 2010.08.01

Abstract

Recently, an intelligent service robot is being developed for use in guiding and providing information to visitors about the building at public institutions. The intelligent robot has a sensor at the bottom to recognize its location. Four wheels, which are arranged in the form of a lozenge, support the robot. This robot cannot be operated on uneven ground because its driving parts are attached to its main body that contains the important internal components. Continuous impact with the ground can change the precise positions of the components and weaken the connection between each structural part. In this paper, the design of the suspension system for such a robot is described. The dynamic model of the robot is created, and the driving characteristics of the robot with the designed suspension system are simulated. Additionally, the suspension system is optimized to reduce the impact for the robot components.

최근에, 서비스용 지능형 로봇이 공공기관에서 방문객들에게 건물을 안내하고 정보를 제공하는데 사용되어지고 있다. 이 로봇은 지면 위치 인식 방식의 센서를 가지며 마름모형태의 네 바퀴로 스스로를 지탱한다. 로봇의 작동은 구동부분과 내부 구조가 하나의 결합된 몸체로 구성되어 있기 때문에 고르지 못한 장소에서는 제한을 받는다. 이와 같은 상태가 지속되면 로봇의 정밀한 부분에서 이상 징후가 발견 될 것이고, 각각의 연결 부위가 약화 될 것이다. 따라서 로봇의 동역학 모델이 만들어 졌고, 서스펜션과 함께 구동 특성들을 위한 모의실험도 이루어 졌다. 이 서스펜션 시스템은 로봇의 각 부분에 미치는 충격들을 줄이는데 최적화 되었다.

Keywords

References

  1. Lee, H. K., 2006, "Status and Forecasts of Intelligent Robot Industry," Journal of the KSME, Vol.46, No.5, pp. 37-43.
  2. Kim, M. S., 2006, "Intelligent Robot Technology as Next-Generation Growth Engine," Journal of the KSME, Vol.46, No.5, pp. 50-55.
  3. Kwon, S. K., 2005, "Concepts and Trends of Intelligent Robot," Electronics Information Center
  4. Jin, J. C., 2008, "Introduction of Trend of Location Recognition System," Information & Communications Magazine, Vol. 25, No. 4, pp. 5-10.
  5. Kim, E. T., Park, C. W., Kim, Y. S., Baik, S. W. and Moon, S. B., 2008, "Vision Based Localization Technology for Mobile Robot," Communications of the KIISE, Vol. 26, No. 4, pp. 12-21.
  6. Iagnemma, K., Rzepniewski, A., Dubowsky, S. and Schenker, P., 2003, "Control of Robotic Vehicles with Actively Articulated Suspensions in Rough Terrain," Autonomous Robots, 14, 5-16. https://doi.org/10.1023/A:1020962718637
  7. Kim, J. Y., Kim, S. H., Jeong, J., Park, N. and Yang, H. S., 2005, "Design of Mobile Robot with Terrain-adaptive Mechanism for Three-dimensional Unstructured Environment," Celebration of the 60th anniversary proceedings of the KSME 2005 autumn annual meeting, pp. 2153-2158.
  8. Moon, W. K., Kim, H. W., Yoo, W. S. and Huh, N., 2007, "ADAMS Simulation to Determine Spring and Damper for an Omnidirectional Robot," Transactions of the KSAE 2007 Spring Annual Meeting of Busan. Ulsan. Gyeongnam branch, pp. 57-61.
  9. Park, S. H., "Understanding of Design of Experiments," Minyoungsa.
  10. Jung, S. P. and Park, T. W., 2008, "Development of the Optimization Design Module of a Brake System," Transactions of the KSAE, Vol. 16 No. 3.
  11. Gillespie, T., 1992, "Fundamentals of Vehicle Dynamics," SAE
  12. 1992, "Truck Systems Design Handbook," SAE, PT-41
  13. ADAMS User’'s Manual, 2002, MSC software
  14. Kim, Y. S., 2004, "Introduction and Application of MATLAB," Nopee-Gipee