DOI QR코드

DOI QR Code

Numerical Analysis of the Energy-Saving Tray Absorber of Flue-Gas Desulfurization Systems

배연탈황설비의 에너지 절약형 트레이 흡수탑에 대한 수치 해석적 연구

  • Received : 2010.01.08
  • Accepted : 2010.06.22
  • Published : 2010.08.01

Abstract

This study is performed to study the effect of the tray in the absorber of a flue-gas desulphurization (FGD) system by using a computational fluid dynamic (CFD) technique. Stagnant time of slurry and the pressure drop in the FGD absorber increase when a tray is used in the absorber. Stagnant time of slurry results in an increase in the desulfurization effect and a decrease in the power of the absorber recirculation pump; however, increased pressure drop requires more power of booster fan in the FGD system should be increased. The gas and slurry hydrodynamics inside the absorber is simulated using a commercial CFD code. The continuous gas phase has been modeled in an Eulerian framework, while the discrete liquid phase has been modeled by adopting a Lagrangian approach by tracking a large number of particles through the computational domain. It was observed that the power saved upon increasing the stagnant time of slurry was more than increased power with pressure drop.

본 연구는 대형 석탄 화력 발전소 탈황설비 내 흡수탑의 성능향상을 위하여 Tray 설치 가능성을 검토하기 위한 연구로 전산 유체역학(CFD) 기법을 이용하여 탈황설비 내 흡수탑의 내부유동을 전산해석 하였다. 흡수탑 내의 Gas와 Slurry의 거동에 대한 사실적 묘사를 위해 Euler-Lagrangian 기법을 이용한 전산해석을 수행하였다. 기존 흡수탑 내에 Tray를 설치함에 따라 탈황설비 내에서 Slurry의 체공시간 증가로 인한 펌프동력 절감과 압력강하 증가로 인한 Fan의 소요동력 증가에 대하여 중점적으로 비교 및 고찰하였다. 그 결과 Tray를 설치함에 따라 흡수탑 내에 Slurry의 체공시간과 배기가스의 압력강하가 증가되는 것을 확인할 수 있었다. 체공시간 증가로 인하여 절약된 동력이 압력강하에 의한 동력 소모량 증가보다 더 큰 것으로 확인되었다.

Keywords

References

  1. Kwon, J. S., 2000, "Flue Gas Desulfurization," Trans. of the SAREK, Vol. 29, No. 3, pp. 47-50.
  2. Jung, S. Y., Kim, J. S., Moon, K. H., Kim, S. W. and Lee, H. K., 2003, "Flow Analysis of the Wet Flue Gas Desulfurization System for 800MW Power Plant," Trans. of the KOSAE, pp. 467-468.
  3. Kim, K. H., Ahn, H. S., Park, S. S. and Park, K. K., 2005, "Enhancement of $SO_2$ Removal by DBA in FGD Plant," Trans. of the KOSAE, pp. 419-420.
  4. Choi, C. R., 2007, "Numerical Analysis on the Flue Gas Flow and Slurry Behavior in the Absorber of a Flue Gas Desulphurization (FGD) System," Trans. of the KOSAE, Vol. 23, No. 4, pp. 478-486. https://doi.org/10.5572/KOSAE.2007.23.4.478
  5. An, H. S., Kim, K. H., Park, S. S., Park, K. K. and Kim, Y. H., 2008, "Operating Characteristics of 0.4MW-Scale Gas Dipersion Type FGD Absorber," Trans. of the KOSAE, Vol. 24, No. 4, pp. 415-422. https://doi.org/10.5572/KOSAE.2008.24.4.415
  6. Hong, J. P., 2000, "Current status of technology of FGD System," Trans. of the KSME, Vol. 40, No. 7, pp. 40-44.
  7. Daly, B. J. and Harlow, F. H., 1970, "Transport Equations in Turbulence," Phys. Fluids, 13, pp. 2634-2649. https://doi.org/10.1063/1.1692845
  8. Morsi, S. A. and Alexander, A. J., 1972, "An Investigation of Particle Trajectories in Two-Phase Flow Systems," Trans. J. Fluid Mech., Vol. 55, No. 20, pp. 193-208. https://doi.org/10.1017/S0022112072001806
  9. Haider and Levenspiel, O., 1989, "Drag Coefficient and Terminalvelocity of Spherical and Nonspherical Particles," Trans. Powder Technology, 58.
  10. Hinze, J. O., 1975, Turbulence, McGraw-Hill Publishing Co., New York.
  11. Lee, B. K., Jeon S. K. and Cho, S. K., 2001, "Improvement of the Sox Removal by Adding Dibasic Acids into the JBR FGD Processes," Trans. of the KOSAE, Vol. 17 No. E4, pp. 157-162.
  12. Lee, H, K., 2004, "A Study on the Gas Distribution Improvement in $SO_2$ Scrubber Using CFD," M.S. Thesis, ChangWon University.
  13. Patankar, S.V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D.C.
  14. "FLUENT 6 User's Guide," FLUENT INC. 2001.12.