DOI QR코드

DOI QR Code

Down-Regulation of Adipogenesis and Hyperglycemia in Diet-Induced Obesity Mouse Model by Aloe QDM

  • Received : 2010.07.12
  • Accepted : 2010.07.22
  • Published : 2010.07.31

Abstract

Obesity-induced disorders contribute to the development of metabolic diseases such as insulin resistance, fatty liver diseases, and type 2 diabetes (T2D). In this study, we evaluated the hypoglycemic and hypolipidemic effects of aloe formula in high fat diet (HFD)-fed C57BL/6N mice. Male mice fed HFD for 28 weeks received a supplement of aloe formula, PAG, ALS, Aloe QDM, and an Aloe QDM complex for a further 8 weeks and were then compared with regular diet fed mice. After the experimental period, the blood glucose levels of the Aloe QDM complex-and PGZ-supplemented mice were significantly lower than those of the HFD-fed mice. Aloe formula, especially the Aloe QDM complex, and the PGZ treatment group profoundly affected the IPGTT and HOMA-IR. Immunochemistry was done for the morphological observation and the resulting sizes of adipocytes around the epididymis were significantly decreased when comparing the aloe formula-treated and HFD-fed groups. Further, aloe formula decreased mRNA expression of fatty acid synthesis enzymes and led to reduced hepatic steatosis in both liver and WAT. These results suggest that supplementation of Aloe QDM complex in the HFD-fed mice improved insulin resistance by lowering blood glucose levels and reducing adipocytes. Our data suggest that dietary aloe formula reduces obesity-induced glucose tolerance by suppressing fatty acid synthesis in the WAT and liver, both of which are important peripheral tissues affecting insulin resistance. The Aloe QDM complex could be used as a nutritional intervention against T2D.

Keywords

References

  1. Agarwal, O. P. (1985). Prevention of atheromatous heart disease. Angiology 36, 485-492. https://doi.org/10.1177/000331978503600801
  2. Anderson, R. A. (1993). Recent advances in the clinical and biochemical effects of chromium deficiency. Prog. Clin. Biol. Res. 380, 221-234.
  3. Anderson, R. A. (1995). Chromium, glucose tolerance, diabetes and lipid metabolism. J. Adv. Med. 8, 37-49.
  4. Attele, A. S., Zhou, Y. P., Xie, J. T., Wu, J. A., Zhang, L., Dey, L., Pugh, W., Rue, P. A., Polonsky, K. S. and Yuan, C. S. (2002). Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabete 51, 1851-1858. https://doi.org/10.2337/diabetes.51.6.1851
  5. DeFronzo, R. A., Bonadonna, R. C. and Ferrannini, E. (1992). Pathogenesis of NIDDM. A balanced overview. Diabetes Care. 15, 318-368. https://doi.org/10.2337/diacare.15.3.318
  6. Eizirik, D. L., Colli, M. L. and Ortis, F. (2009). The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat. Rev. Endocrinol. 5, 219-226. https://doi.org/10.1038/nrendo.2009.21
  7. Folch, J., Less, M. and Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497-509.
  8. Hu, F. B., Manson, J. E., Stampfer, M. J., Colditz, G., Liu, S., Solomon, C. G. and Willett, W. C. (2001). Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N. Engl. J. Med. 345, 790-797. https://doi.org/10.1056/NEJMoa010492
  9. Jullien, D. (2008). Pathogenesis of the metabolic syndrome. Ann. Dermatol. Venereol. 135, 243-248. https://doi.org/10.1016/S0151-9638(08)70542-8
  10. Katsuki, A., Sumida, Y., Gabazza, E. C., Murashima, S., Furuta, M., Araki-Sasaki, R., Hori, Y., Yano, Y. and Adachi, Y. (2001). Homeostasis model assessment is a reliable indicator of insulin resistance during follow-up of patients with type 2 diabetes. Diabetes Care 24, 362-365. https://doi.org/10.2337/diacare.24.2.362
  11. Kim, J. O., Kim, K. S., Lee, G. D., and Kwon, J. H. (2009a). Antihyperglycemic and antioxidative effects of new herbal formula in streptozotocin-induced diabetic rats. J. Med. Food 12, 728-735. https://doi.org/10.1089/jmf.2008.1195
  12. Kim, K., Kim, H., Kwon, J., Lee, S., Kong, H., Im, S. A., Lee, Y. H., Lee, Y. R., Oh, S. T., Jo, T. H., Park, Y. I., Lee, C. K. and Kim, K. (2009b). Hypoglycemic and hypolipidemic effects of processed Aloe vera gel in a mouse model of non-insulin-dependent diabetes mellitus. Phytomedicine 16, 856-863. https://doi.org/10.1016/j.phymed.2009.02.014
  13. Klein, A. D. and Penneys, N. (1988). Aloe vera. J. Am. Acad. Dermatol. 18, 714-720. https://doi.org/10.1016/S0190-9622(88)70095-X
  14. Libby, P., Ridker, P. M. and Maseri, A. (2002). Inflammation and atherosclerosis. Circulation 105, 1135-1143. https://doi.org/10.1161/hc0902.104353
  15. Marcovecchio, M., Mohn, A. and Chiarelli, F. (2005). Type 2 diabetes mellitus in children and adolescents. J. Endocrinol. Invest. 28, 853-863. https://doi.org/10.1007/BF03347581
  16. Mertz, W. (1993). Chromium in human nutrition: a review. J. Nutr. 123, 626-633. https://doi.org/10.1093/jn/123.4.626
  17. Mertz, W. and Schwarz, K. (1959). Relation of glucose tolerance factor to impaired intravenous glucose tolerance of rats on stock diets. Am. J. Physiol. 196, 614-6108.
  18. Omodeo Sale, F., Marchesini, S., Fishman, P. H. and Berra, B. (1984). A sensitive enzymatic assay for determination of cholesterol in lipid extracts. Anal. Biochem. 142, 347-350. https://doi.org/10.1016/0003-2697(84)90475-5
  19. Reynolds, T. and Dweck, A. C. (1999). Aloe vera leaf gel: a review update. J. Ethnopharmacol. 68, 3-37. https://doi.org/10.1016/S0378-8741(99)00085-9
  20. Rosenbloom, A. L., Joe, J. R., Young, R. S. and Winter, W. E. (1999). Emerging epidemic of type 2 diabetes in youth. Diabetes Care 22, 345-354. https://doi.org/10.2337/diacare.22.2.345
  21. Schwarz, K. and Mertz, W. (1959). Chromium (III) and the glucose tolerance factor. Arch. Biochem. Biophys. 85, 292-295. https://doi.org/10.1016/0003-9861(59)90479-5
  22. Srikanta, S., Ganda, O. P., Jackson, R. A., Gleason, R. E., Kaldany, A., Garovoy, M. R., Milford, E. L., Carpenter, C. B., Soeldner, J. S. and Eisenbarth, G. S. (1983). Type I diabetes mellitus in monozygotic twins: chronic progressive beta cell dysfunction. Ann. Intern. Med. 99, 320-326. https://doi.org/10.7326/0003-4819-99-3-320
  23. Weyer, C., Funahashi, T., Tanaka, S., Hotta, K., Matsuzawa, Y., Pratley, R. E. and Tataranni, P. A. (2001). Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86, 1930-1935. https://doi.org/10.1210/jc.86.5.1930
  24. Xie, J. T., Aung, H. H., Wu, J. A., Attel, A. S. and Yuan, C. S. (2002). Effects of American ginseng berry extract on blood glucose levels in ob/ob mice. Am. J. Chin. Med. 30, 187-194. https://doi.org/10.1142/S0192415X02000442
  25. Zhang, C. Y., Baffy, G., Perret, P., Krauss, S., Peroni, O., Grujic, D., Hagen, T., Vidal-Puig, A. J., Boss, O., Kim, Y. B., Zheng, X. X., Wheeler, M. B., Shulman, G. I., Chan, C. B. and Lowell, B. B. (2001). Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell 105, 745-755. https://doi.org/10.1016/S0092-8674(01)00378-6

Cited by

  1. Subchronic toxicity evaluation of aloesin vol.61, pp.2, 2011, https://doi.org/10.1016/j.yrtph.2011.07.005
  2. Dietary Aloe QDM Complex Reduces Obesity-Induced Insulin Resistance and Adipogenesis in Obese Mice Fed a High-Fat Diet vol.12, pp.3, 2012, https://doi.org/10.4110/in.2012.12.3.96
  3. Metabolic effects of aloe vera gel complex in obese prediabetes and early non-treated diabetic patients: Randomized controlled trial vol.29, pp.9, 2013, https://doi.org/10.1016/j.nut.2013.02.015
  4. Dietary Aloe Reduces Adipogenesis via the Activation of AMPK and Suppresses Obesity-related Inflammation in Obese Mice vol.11, pp.2, 2011, https://doi.org/10.4110/in.2011.11.2.107
  5. In vitro and in vivo assessment of the genotoxic activity of aloesin vol.61, pp.2, 2011, https://doi.org/10.1016/j.yrtph.2011.07.011
  6. Then-Hexane, ethylacetate, and butanol fractions from Hydnocarpi Semen enhanced wound healing in a mice ulcer model vol.34, pp.6, 2012, https://doi.org/10.3109/08923973.2012.681328
  7. Aloe QDM complex enhances specific cytotoxic T lymphocyte killing in vivo in metabolic disease mice vol.81, pp.3, 2017, https://doi.org/10.1080/09168451.2016.1258986
  8. Lessons from Mouse Models of High-Fat Diet-Induced NAFLD vol.14, pp.11, 2013, https://doi.org/10.3390/ijms141121240
  9. Dietary Aloe Improves Insulin Sensitivity via the Suppression of Obesity-induced Inflammation in Obese Mice vol.11, pp.1, 2011, https://doi.org/10.4110/in.2011.11.1.59
  10. Effect ofAloe veraon glycaemic control in prediabetes and type 2 diabetes: a systematic review and meta-analysis vol.41, pp.2, 2016, https://doi.org/10.1111/jcpt.12382
  11. Modulation of Pro-inflammatory and Anti-inflammatory Cytokines in the Fat by an Aloe Gel-based Formula, QDMC, Is Correlated with Altered Gut Microbiota vol.21, pp.2, 2010, https://doi.org/10.4110/in.2021.21.e15