DOI QR코드

DOI QR Code

Mitochondria: The Secret Chamber of Therapeutic Targets for Age-Associated Degenerative Diseases

  • KimPak, Young-Mi (Department of Physiology, College of Medicine, Kyung Hee University) ;
  • Jeong, Jae-Hoon (Department of Life and Nanopharmaceutical Science, College of Medicine, Kyung Hee University)
  • 투고 : 2010.07.12
  • 심사 : 2010.07.16
  • 발행 : 2010.07.31

초록

Mitochondria have long been recognized as ATP engines for the cell and recently as a dynamic and mobile organelles that control cell death and life. This exquisite organelle is the site of reactive oxygen species production and is highly vulnerable to exogenous stresses, resulting in catastrophic damage to the cell. Mitochondrial dysfunction is linked to a wide range of age-associated degenerative diseases, such as metabolic syndrome, cardiovascular disease, and neurodegenerative diseases. Understanding the molecular mechanisms of mitochondria-dependent pathogenesis may provide important strategies to treat these diseases. Indeed, mitochondria are emerging therapeutic targets for the mitochondria-related diseases. In this paper, we review the recent concepts of mitochondrial biology and how mitochondria are involved in age-associated degenerative diseases. Furthermore, we summarize the therapeutics which target to improve mitochondrial functions.

키워드

참고문헌

  1. Ahn, S. Y., Choi, Y. S., Koo, H. J., Jeong, J. H., Park, W. H., Kim, M., Piao, Y. and Pak, Y. K. (2010). Mitochondrial dysfunction enhances the migration of vascular smooth muscle cells via suppression of Akt phosphorylation. Biochim. Biophys. Acta. 1800, 275-281. https://doi.org/10.1016/j.bbagen.2009.09.005
  2. Barja, G. and Herrero, A. (2000). Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB. J. 14, 312-318. https://doi.org/10.1096/fasebj.14.2.312
  3. Capaldi, R. A. (2000). The changing face of mitochondrial research. Trends Biochem. Sci. 25, 212-214. https://doi.org/10.1016/S0968-0004(00)01584-X
  4. Chan, D. C. (2006a). Mitochondria: dynamic organelles in disease, aging, and development. Cell 125, 1241-1252. https://doi.org/10.1016/j.cell.2006.06.010
  5. Chan, D. C. (2006b). Mitochondrial fusion and fission in mammals. Annu. Rev. Cell Dev. Biol. 22, 79-99. https://doi.org/10.1146/annurev.cellbio.22.010305.104638
  6. Chen, H. and Chan, D. C. (2009). Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum. Mol. Genet. 18, R169-176. https://doi.org/10.1093/hmg/ddp326
  7. Cho, D. H., Nakamura, T., Fang, J., Cieplak, P., Godzik, A., Gu, Z. and Lipton, S. A. (2009). S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324, 102-105. https://doi.org/10.1126/science.1171091
  8. Choi, Y. S., Hong, J. M., Lim, S., Ko, K. S. and Pak, Y. K. (2006). Impaired coactivator activity of the Gly482 variant of peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) on mitochondrial transcription factor A (TFAM) promoter. Biochem. Biophys. Res. Commun. 344, 708-712. https://doi.org/10.1016/j.bbrc.2006.03.193
  9. Choi, Y. S., Lee, K. U. and Pak, Y. K. (2004). Regulation of mitochondrial transcription factor A expression by high glucose. Ann. N Y Acad. Sci. 1011, 69-77. https://doi.org/10.1196/annals.1293.008
  10. Cortopassi, G. A., Shibata, D., Soong, N. W. and Arnheim, N. (1992). A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc. Natl. Acad. Sci. U S A 89, 7370-7374. https://doi.org/10.1073/pnas.89.16.7370
  11. Ekstrand, M. I., Falkenberg, M., Rantanen, A., Park, C. B., Gaspari, M., Hultenby, K., Rustin, P., Gustafsson, C. M. and Larsson, N. G. (2004). Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum. Mol. Genet. 13, 935-944. https://doi.org/10.1093/hmg/ddh109
  12. Falkenberg, M., Larsson, N. G. and Gustafsson, C. M. (2007). DNA replication and transcription in mammalian mitochondria. Annu. Rev. Biochem. 76, 679-699. https://doi.org/10.1146/annurev.biochem.76.060305.152028
  13. Frantz, M. C. and Wipf, P. (2010). Mitochondria as a target in treatment. Environ. Mol. Mutagen. 51, 462-475.
  14. Fujitani, Y., Ueno, T. and Watada, H. (2010). Autophagy in health and disease. 4. The role of pancreatic beta-cell autophagy in health and diabetes. Am. J. Physiol. Cell Physiol. 299, C1-6. https://doi.org/10.1152/ajpcell.00084.2010
  15. Gaspari, M., Falkenberg, M., Larsson, N. G. and Gustafsson, C. M. (2004). The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells. EMBO. J. 23, 4606-4614. https://doi.org/10.1038/sj.emboj.7600465
  16. Hoppins, S., Lackner, L. and Nunnari, J. (2007). The machines that divide and fuse mitochondria. Annu. Rev. Biochem. 76, 751-780. https://doi.org/10.1146/annurev.biochem.76.071905.090048
  17. Kim, J. A., Wei, Y. and Sowers, J. R. (2008). Role of mitochondrial dysfunction in insulin resistance. Circ. Res. 102, 401-414. https://doi.org/10.1161/CIRCRESAHA.107.165472
  18. Kujoth, G. C., Hiona, A., Pugh, T. D., Someya, S., Panzer, K., Wohlgemuth, S. E., Hofer, T., Seo, A. Y., Sullivan, R., Jobling, W. A., Morrow, J. D., Van Remmen, H., Sedivy, J. M., Yamasoba, T., Tanokura, M., Weindruch, R., Leeuwenburgh, C. and Prolla, T. A. (2005). Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481-484. https://doi.org/10.1126/science.1112125
  19. Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., Geny, B., Laakso, M., Puigserver, P. and Auwerx, J. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109-1122. https://doi.org/10.1016/j.cell.2006.11.013
  20. Lane, N. (2006a). Cell biology: power games. Nature 443, 901-903. https://doi.org/10.1038/443901a
  21. Lane, N. (2006b). Mitochondrial disease: powerhouse of disease. Nature 440, 600-602. https://doi.org/10.1038/440600a
  22. Larsson, N. G. (2010). Somatic mitochondrial DNA mutations in mammalian aging. Annu. Rev. Biochem. 79, 683-706. https://doi.org/10.1146/annurev-biochem-060408-093701
  23. Larsson, N. G. and Rustin, P. (2001). Animal models for respiratory chain disease. Trends Mol. Med. 7, 578-581. https://doi.org/10.1016/S1471-4914(01)02167-0
  24. Larsson, N. G., Wang, J., Wilhelmsson, H., Oldfors, A., Rustin, P., Lewandoski, M., Barsh, G. S. and Clayton, D. A. (1998). Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18, 231-236. https://doi.org/10.1038/ng0398-231
  25. Lee, C. K., Allison, D. B., Brand, J., Weindruch, R. and Prolla, T. A. (2002). Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts. Proc. Natl. Acad. Sci. U S A 99, 14988-14993. https://doi.org/10.1073/pnas.232308999
  26. Lee, H. K., Park, K. S., Cho, Y. M., Lee, Y. Y. and Pak, Y. K. (2005). Mitochondria-based model for fetal origin of adult disease and insulin resistance. Ann. N Y Acad. Sci. 1042, 1-18. https://doi.org/10.1196/annals.1338.001
  27. Lee, H. K., Song, J. H., Shin, C. S., Park, D. J., Park, K. S., Lee, K. U. and Koh, C. S. (1998). Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus. Diabetes Res. Clin. Pract. 42, 161-167. https://doi.org/10.1016/S0168-8227(98)00110-7
  28. Lee, J., Boo, J. H. and Ryu, H. (2009). The failure of mitochondria leads to neurodegeneration: Do mitochondria need a jump start? Adv. Drug Deliv. Rev. 61, 1316-1323. https://doi.org/10.1016/j.addr.2009.07.016
  29. Leone, T. C., Lehman, J. J., Finck, B. N., Schaeffer, P. J., Wende, A. R., Boudina, S., Courtois, M., Wozniak, D. F., Sambandam, N., Bernal-Mizrachi, C., Chen, Z., Holloszy, J. O., Medeiros, D. M., Schmidt, R. E., Saffitz, J. E., Abel, E. D., Semenkovich, C. F. and Kelly, D. P. (2005). PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 3, e101. https://doi.org/10.1371/journal.pbio.0030101
  30. Liang, H. and Ward, W. F. (2006). PGC-1alpha: a key regulator of energy metabolism. Adv. Physiol. Educ. 30, 145-151. https://doi.org/10.1152/advan.00052.2006
  31. Lim, S., Ahn, S. Y., Song, I. C., Chung, M. H., Jang, H. C., Park, K. S., Lee, K. U., Pak, Y. K. and Lee, H. K. (2009). Chronic exposure to the herbicide, atrazine, causes mitochondrial dysfunction and insulin resistance. PLoS One 4, e5186. https://doi.org/10.1371/journal.pone.0005186
  32. Lin, M. T. and Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787-795. https://doi.org/10.1038/nature05292
  33. Lustbader, J. W., Cirilli, M., Lin, C., Xu, H. W., Takuma, K., Wang, N., Caspersen, C., Chen, X., Pollak, S., Chaney, M., Trinchese, F., Liu, S., Gunn-Moore, F., Lue, L. F., Walker, D. G., Kuppusamy, P., Zewier, Z. L., Arancio, O., Stern, D., Yan, S. S. and Wu, H. (2004). ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease. Science 304, 448-452. https://doi.org/10.1126/science.1091230
  34. MacAskill, A. F. and Kittler, J. T. (2010). Control of mitochondrial transport and localization in neurons. Trends Cell Biol. 20, 102-112. https://doi.org/10.1016/j.tcb.2009.11.002
  35. Madamanchi, N. R. and Runge, M. S. (2007). Mitochondrial dysfunction in atherosclerosis. Circ. Res. 100, 460-473. https://doi.org/10.1161/01.RES.0000258450.44413.96
  36. Matsushima, Y., Garesse, R. and Kaguni, L. S. (2004). Drosophila mitochondrial transcription factor B2 regulates mitochondrial DNA copy number and transcription in schneider cells. J. Biol. Chem. 279, 26900-26905. https://doi.org/10.1074/jbc.M401643200
  37. McBride, H. M. (2008). Parkin mitochondria in the autophagosome. J. Cell. Biol. 183, 757-759. https://doi.org/10.1083/jcb.200810184
  38. Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato, G. and Attardi, G. (1999). Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286, 774-779. https://doi.org/10.1126/science.286.5440.774
  39. Milne, J. C., Lambert, P. D., Schenk, S., Carney, D. P., Smith, J. J., Gagne, D. J., Jin, L., Boss, O., Perni, R. B., Vu, C. B., Bemis, J. E., Xie, R., Disch, J. S., Ng, P. Y., Nunes, J. J., Lynch, A. V., Yang, H., Galonek, H., Israelian, K., Choy, W., Iffland, A., Lavu, S., Medvedik, O., Sinclair, D. A., Olefsky, J. M., Jirousek, M. R., Elliott, P. J. and Westphal, C. H. (2007). Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712-716. https://doi.org/10.1038/nature06261
  40. Narendra, D., Tanaka, A., Suen, D. F. and Youle, R. J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795-803. https://doi.org/10.1083/jcb.200809125
  41. Okamoto, K. and Shaw, J. M. (2005). Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu. Rev. Genet. 39, 503-536. https://doi.org/10.1146/annurev.genet.38.072902.093019
  42. Park, J., Lee, S. B., Lee, S., Kim, Y., Song, S., Kim, S., Bae, E., Kim, J., Shong, M., Kim, J. M. and Chung, J. (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157-1161. https://doi.org/10.1038/nature04788
  43. Park, K. S., Nam, K. J., Kim, J. W., Lee, Y. B., Han, C. Y., Jeong, J. K., Lee, H. K. and Pak, Y. K. (2001). Depletion of mitochondrial DNA alters glucose metabolism in SK-Hep1 cells. Am. J. Physiol. Endocrinol. Metab. 280, E1007-1014. https://doi.org/10.1152/ajpendo.2001.280.6.E1007
  44. Park, K. S., Song, J. H., Lee, K. U., Choi, C. S., Koh, J. J., Shin, C. S. and Lee, H. K. (1999). Peripheral blood mitochondrial DNA content correlates with lipid oxidation rate during euglycemic clamps in healthy young men. Diabetes Res. Clin. Pract. 46, 149-154. https://doi.org/10.1016/S0168-8227(99)00086-8
  45. Park, K. S., Wiederkehr, A., Kirkpatrick, C., Mattenberger, Y., Martinou, J. C., Marchetti, P., Demaurex, N. and Wollheim, C. B. (2008). Selective actions of mitochondrial fission/fusion genes on metabolism-secretion coupling in insulin-releasing cells. J. Biol. Chem. 283, 33347-33356. https://doi.org/10.1074/jbc.M806251200
  46. Patti, M. E., Butte, A. J., Crunkhorn, S., Cusi, K., Berria, R., Kashyap, S., Miyazaki, Y., Kohane, I., Costello, M., Saccone, R., Landaker, E. J., Goldfine, A. B., Mun, E., DeFronzo, R., Finlayson, J., Kahn, C. R. and Mandarino, L. J. (2003). Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc. Natl. Acad. Sci. U S A 100, 8466-8471. https://doi.org/10.1073/pnas.1032913100
  47. Perry, G. M., Tallaksen-Greene, S., Kumar, A., Heng, M. Y., Kneynsberg, A., van Groen, T., Detloff, P. J., Albin, R. L. and Lesort, M. (2010). Mitochondrial calcium uptake capacity as a therapeutic target in the R6/2 mouse model of Huntington's disease. Hum. Mol. Genet. in press.
  48. Petersen, K. F., Befroy, D., Dufour, S., Dziura, J., Ariyan, C., Rothman, D. L., DiPietro, L., Cline, G. W. and Shulman, G. I. (2003). Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300, 1140-1142. https://doi.org/10.1126/science.1082889
  49. Petersen, K. F., Dufour, S., Befroy, D., Garcia, R. and Shulman, G. I. (2004). Impaired mitochondrial activity in the insulinresistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 350, 664-671. https://doi.org/10.1056/NEJMoa031314
  50. Puigserver, P., Wu, Z., Park, C. W., Graves, R., Wright, M. and Spiegelman, B. M. (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829-839. https://doi.org/10.1016/S0092-8674(00)81410-5
  51. Saha, S., Guillily, M. D., Ferree, A., Lanceta, J., Chan, D., Ghosh, J., Hsu, C. H., Segal, L., Raghavan, K., Matsumoto, K., Hisamoto, N., Kuwahara, T., Iwatsubo, T., Moore, L., Goldstein, L., Cookson, M. and Wolozin, B. (2009). LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J. Neurosci. 29, 9210-9218. https://doi.org/10.1523/JNEUROSCI.2281-09.2009
  52. Schapira, A. H. (2006). Mitochondrial disease. Lancet. 368, 70-82. https://doi.org/10.1016/S0140-6736(06)68970-8
  53. Silva, J. P., Kohler, M., Graff, C., Oldfors, A., Magnuson, M. A., Berggren, P. O. and Larsson, N. G. (2000). Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nat. Genet. 26, 336-340. https://doi.org/10.1038/81649
  54. Song, J., Oh, J. Y., Sung, Y. A., Pak, Y. K., Park, K. S. and Lee, H. K. (2001). Peripheral blood mitochondrial DNA content is related to insulin sensitivity in offspring of type 2 diabetic patients. Diabetes Care 24, 865-869. https://doi.org/10.2337/diacare.24.5.865
  55. Trifunovic, A., Hansson, A., Wredenberg, A., Rovio, A. T., Dufour, E., Khvorostov, I., Spelbrink, J. N., Wibom, R., Jacobs, H. T. and Larsson, N. G. (2005). Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc. Natl. Acad. Sci. U S A 102, 17993-17998. https://doi.org/10.1073/pnas.0508886102
  56. Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J. N., Rovio, A. T., Bruder, C. E., Bohlooly, Y. M., Gidlof, S., Oldfors, A., Wibom, R., Tornell, J., Jacobs, H. T. and Larsson, N. G. (2004). Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417-423. https://doi.org/10.1038/nature02517
  57. Twig, G., Elorza, A., Molina, A. J., Mohamed, H., Wikstrom, J. D., Walzer, G., Stiles, L., Haigh, S. E., Katz, S., Las, G., Alroy, J., Wu, M., Py, B. F., Yuan, J., Deeney, J. T., Corkey, B. E. and Shirihai, O. S. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433-446. https://doi.org/10.1038/sj.emboj.7601963
  58. Wagner, B. K., Kitami, T., Gilbert, T. J., Peck, D., Ramanathan, A., Schreiber, S. L., Golub, T. R. and Mootha, V. K. (2008). Large-scale chemical dissection of mitochondrial function. Nat. Biotechnol. 26, 343-351. https://doi.org/10.1038/nbt1387
  59. Wallace, D. C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359-407. https://doi.org/10.1146/annurev.genet.39.110304.095751
  60. Wallace, D. C., Fan, W. and Procaccio, V. (2010). Mitochondrial energetics and therapeutics. Annu. Rev. Pathol. 5, 297-348. https://doi.org/10.1146/annurev.pathol.4.110807.092314
  61. Wang, X. and Schwarz, T. L. (2009). The mechanism of $Ca^{2+}$ - dependent regulation of kinesin-mediated mitochondrial motility. Cell 136, 163-174. https://doi.org/10.1016/j.cell.2008.11.046
  62. Wang, Y., Michikawa, Y., Mallidis, C., Bai, Y., Woodhouse, L., Yarasheski, K. E., Miller, C. A., Askanas, V., Engel, W. K., Bhasin, S. and Attardi, G. (2001). Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for replication. Proc. Natl. Acad. Sci. U S A 98, 4022-4027. https://doi.org/10.1073/pnas.061013598
  63. Yankner, B. A., Lu, T. and Loerch, P. (2008). The aging brain. Annu. Rev. Pathol. 3, 41-66. https://doi.org/10.1146/annurev.pathmechdis.2.010506.092044

피인용 문헌

  1. Ropinirole protects against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced neurotoxicity in mice via anti-apoptotic mechanism vol.104, 2013, https://doi.org/10.1016/j.pbb.2013.01.017
  2. Causal effects of synthetic chemicals on mitochondrial deficits and diabetes pandemic vol.36, pp.2, 2013, https://doi.org/10.1007/s12272-013-0022-9
  3. Endoplasmic Reticulum Stress Impairs Insulin Signaling through Mitochondrial Damage in SH-SY5Y Cells vol.20, pp.4, 2012, https://doi.org/10.1159/000333069
  4. Overexpression of TFAM, NRF-1 and myr-AKT protects the MPP+-induced mitochondrial dysfunctions in neuronal cells vol.1820, pp.5, 2012, https://doi.org/10.1016/j.bbagen.2011.08.007
  5. Contributions of Academic Laboratories to the Discovery and Development of Chemical Biology Tools vol.56, pp.18, 2013, https://doi.org/10.1021/jm400132d
  6. Triple herbal extract DA-9805 exerts a neuroprotective effect via amelioration of mitochondrial damage in experimental models of Parkinson’s disease vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-34240-x