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EXPLICIT EXAMPLES OF KÄHLER METRICS
ON THE ELLIPSOIDS

Kwang-Soon Park

Abstract. In this paper, we construct explicitly Kähler metrics on the
ellipsoids and calculate their sectional curvatures. Using MAPLE [3], we
obtain some geodesic curves on an ellipsoid so that if some conditions are
dropped in Question 2.1 [4], then Question 2.1 is not true.

1. Introduction

A Kähler metric g is a Riemannian metric on a complex manifold (M, I)
such that g( , ) = g(I , I ) and dg(I , ) = 0. There are some explicit examples
of Kähler metrics such as the Euclidean metric on Cn, the Fubini-Study metric
on CPm, the Eguchi-Hanson metric on the crepant resolution of C2/{±1}, etc
[2]. In this paper, we construct explicitly Kähler metrics on the ellipsoids (See
Theorem 3.1) and calculate their sectional curvatures (See Theorem 3.2). With
the aides of MAPLE, we find some closed geodesic curves on an ellipsoid. Using
them, we show that Question 4.1 is not true.

2. Preliminaries

Let S2 := {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}. Let pN := (0, 0, 1) and
pS := (0, 0,−1). Consider the Riemannian manifold (S2, g) such that g is the
induced metric on S2 from the Euclidean space R3. Then we can write down the
metric g explicitly in local coordinates. Define the charts πN : S2−{pN} 7→ R2

and πS : S2 − {pS} 7→ R2, respectively, by

πN (x, y, z) :=
(

x

1− z
,

y

1− z

)
and πS(x, y, z) :=

(
x

1 + z
,

y

1 + z

)
.

Then {(S2 − {pN}, πN ), (S2 − {pS}, πS)} is an atlas of S2. Define the identifi-
cations f+ : R2 7→ C and f− : R2 7→ C, respectively, by

f+(x, y) = z and f−(x, y) = z̄,

Received June 19, 2009.
2000 Mathematics Subject Classification. 53C55, 53C22.
Key words and phrases. Kähler metric, sectional curvature, minimal geodesic curve.

c©2010 The Korean Mathematical Society

451



452 KWANG-SOON PARK

where z = x+
√−1y and z̄ = x−√−1y. Let π̃N := f+ ◦πN and π̃S := f− ◦πS .

Since (π̃S ◦ π̃−1
N )(z) = 1

z for z ∈ C−{0}, {(S2−{pN}, π̃N ), (S2−{pS}, π̃S)} is
a holomorphic atlas of S2. Thus, S2 is a complex manifold, i.e., S2 ∼= CP 1. Let
I be the corresponding complex structure on S2. Let g̃ be the Fubini-Study
metric on (S2, I) = CP 1 [1]. Then we easily get

g =
4

(1 + x2 + y2)2
(dx2 + dy2) on πN (S2 − {pN})

and
g̃ =

1
(1 + |z|2)2 (dx2 + dy2) on π̃N (S2 − {pN}).

3. Kähler metrics

Throughout this section, we will use the notation of Section 2.
Let S(a, b, c) := {(x, y, z) ∈ R3 | x2

a2 + y2

b2 + z2

c2 = 1} for any positive real num-
bers a, b, c ∈ R+. Define the maps fabc : S(a, b, c) 7→ S2 by

fabc(x, y, z) =
(x

a
,
y

b
,
z

c

)

for a, b, c ∈ R+. Let p̂N := (0, 0, c) and p̂S := (0, 0,−c). Consider the inclusion
maps iN : S(a, b, c)− {p̂N} ↪→ S(a, b, c) and iS : S(a, b, c)− {p̂S} ↪→ S(a, b, c).
Let π̂N := f+ ◦ πN ◦ fabc ◦ iN and π̂S := f− ◦ πS ◦ fabc ◦ iS . Then we know
that {(S(a, b, c) − {p̂N}, π̂N ), (S(a, b, c) − {p̂S}, π̂S)} is a holomorphic atlas of
S(a, b, c). Thus, S(a, b, c) is a complex manifold. Let Î be the corresponding
complex structure on S(a, b, c) and g̃abc the induced metric on S(a, b, c) from
the Euclidean space R3. With some computations, we get

g̃abc =
1

(1 + x2 + y2)4
(((−2ax2 + 2ay2 + 2a)2 + 16b2x2y2 + 16c2x2)dx2

− 4xy(a(−2ax2 + 2ay2 + 2a) + b(2bx2 − 2by2 + 2b)− 4c2)

(dx · dy + dy · dx) + (16a2x2y2 + (2bx2 − 2by2 + 2b)2 + 16c2y2)dy2)

on (πN ◦fabc)(S(a, b, c)−{p̂N}). Since Î( ∂
∂x ) = ∂

∂y and Î( ∂
∂y ) = − ∂

∂x , it is easy

to see that g̃abc is not Hermitian with respect to the complex structure Î. Let
ĝabc = g̃abc( , ) + g̃abc(Î , Î ) and ωabc := ĝabc(Î , ). Since dim S(a, b, c) = 2,
we have dωabc = 0. Now, we obtain:

Theorem 3.1. Let S(a, b, c) and ĝabc be the ellipsoid and the metric, respec-
tively, given as above. Then the metric ĝabc is Kähler on the complex manifold
(S(a, b, c), Î). Furthermore, we get

ĝabc =
1

(1 + x2 + y2)4
(4a2((−x2 + y2 + 1)2 + 4x2y2)

+ 4b2((x2 − y2 + 1)2 + 4x2y2) + 16c2(x2 + y2))(dx2 + dy2)

on (πN ◦ fabc)(S(a, b, c)− {p̂N}).
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Remark 3.1. Define a function

uabc :=− 2a2 + 2b2

3(1 + |z|2)2 −
b2 − a2

12z̄2(1 + |z|2)2 +
4c2

3(1 + |z|2)2 −
(b2 − a2)z̄2

12(1 + |z|2)2

− 4c2

3(1 + |z|2) +
b2 − a2

6z̄2(1 + |z|2) +
2
3
(2a2 + 2b2) ln(1 + |z|2)

+
4
3
c2 ln(1 + |z|2) +

2a2 + 2b2

3(1 + |z|2) −
b2 − a2

12z2(1 + |z|2)2 −
(b2 − a2)z2

12(1 + |z|2)2

+
b2 − a2

6z2(1 + |z|2)
on (f+ ◦ πN ◦ fabc)(S(a, b, c) − {p̂N}) for each a, b, c ∈ R+. Then by the ele-
mentary calculation, uabc is a Kähler potential for the Kähler metric ĝabc on
(f+ ◦ πN ◦ fabc)(S(a, b, c)− {p̂N}), i.e., ωabc =

√−1∂∂̄uabc. In particular,

uaaa = 4a2 ln(1 + |z|2) for a ∈ R+.

Consider the pull-back metrics (f−1
abc)

∗ĝabc on S2 for any a, b, c ∈ R+. Conve-
niently, let gabc := (f−1

abc)
∗ĝabc for a, b, c ∈ R+. Then the family {gabc | a, b, c ∈

R+} is the collection of Kähler metrics gabc on S2 for a, b, c ∈ R+ so that the
metrics gaaa are the Fubini-Study metric on S2 = CP1, up to constant, for
a ∈ R+. Furthermore, we have

g 1
2
√

2
1

2
√

2
1

2
√

2
= g̃ on S2.

With some computations, we obtain the sectional curvature Kabc of the Kähler
metric gabc as follows [5].

Theorem 3.2. Let Kabc be the sectional curvature of the Kähler metric gabc

on S2 for a, b, c ∈ R+. Then we have

Kabc(x, y) =2(4b4x6y2 + 20a2y4c2x2 − 6a2y4c2x4 + 16b2y4c2x2

− 6b2y4c2x4 + 12a2x4b2y4 + a4 + b4 − 4a2y6b2 − 4a4x2y2

− c2a2 − c2b2 + 32c4x2y2 + 2a2b2 + 4b4x2y6 + 4a4x2y6

− 4b4x2y2 + 4a4x2y4 − 4a2y2b2 − 4a4x4y2 + 4b4x4y2

+ 8c2a2y2 + 4c2b2y2 + 4a4x6y2 + 6a4y4 + 6b4y4 + a4y8

+ b4y8 + 16c4y4 + 8a2y6c2 + 4b2y6c2 − 12a2y4b2 + 18a2y4c2

− 4b4x2y4 − 22b2y4c2 + 6a4x4y4 − 12a2x4b2y2 + 8a2x2b2y2

− 4a2x2c2y2 − 4b2x2c2y2 + 2a2y8b2 − a2y8c2 + 6b4x4y4

− b2y8c2 + 8a2y6b2x2 − 4a2y6c2x2 − 4b2y6c2x2 + 16c2a2y2x4

+ 20c2b2y2x4 + 8a2x6b2y2 − 4a2x6c2y2 − 4b2x6c2y2 + 4a4y6

+ 4a4y2 − 4b4y6 − 4b4y2 − 12a2x2b2y4 − 4a4x2 + 4b4x6 + 6b4x4

+ 4b4x2 + b4x8 + 16c4x4 + a4x8 − 4a4x6 + 6a4x4 − 4a2x6b2
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− 12a2x4b2 − 4a2x2b2 − 22a2x4c2 + 18b2x4c2 + 4c2a2x2 + 8c2b2x2

+ 2a2x8b2 + 4a2x6c2 − a2x8c2 + 8b2x6c2 − b2x8c2)(1 + x2 + y2)2

/(a2x4 + 2a2x2y2 + a2y4 − 2a2x2 + 2a2y2 + a2 + b2x4 + 2b2x2y2

+ b2y4 + 2b2x2 − 2b2y2 + b2 + 4c2x2 + 4c2y2)3

on πN (S2 − {pN}).
Remark 3.2. If a = b = c, then it is easy to see that

Kaaa(x, y) =
1

2a2
on πN (S2 − {pN}).

Since g = g 1√
2

1√
2

1√
2
, the sectional curvature K of the metric g is equal to 1.

4. Minimal geodesic

Throughout this section, we will use the notation of the previous sections.
For convenience, denote by S, ĝ, and f the ellipsoid S(1, 2, 1), the metric ĝ121,
and the map f121, respectively. Then we have

ĝ =
1

(1 + x2 + y2)4
(20(1 + x2 + y2)2 − 48y2)(dx2 + dy2)

on (πN ◦ f)(S − {pN}). Using MAPLE [3, See page 187], we can get Figure 1.
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(a) geodesic curves on S
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(b) a geodesic curve on S

Figure 1. Geodesic curves for the metric ĝ

From Figure 1-(a) showing some geodesic curves on S, we see that the fol-
lowing curves are closed geodesic in S:

C1(t) := (πN ◦ f)−1(t, 0) for t ∈ [−∞,∞]

C2(t) := (πN ◦ f)−1(0, t) for t ∈ [−∞,∞]

C3(t) := (πN ◦ f)−1(cos t, sin t) for t ∈ [0, 2π].
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Note that C1 = {(πN ◦ f)−1(tan t√
20

, 0) | t ∈ [−√5π,
√

5π]}. It is easy to see
that the curve (πN ◦ f)−1(tan t√

20
, 0) is geodesic. Using MAPLE, we can also

calculate the lengthes of the above closed geodesic curves. Denote by L(C) the
length of a curve C(t). Then,

L(C1) ≈ 14.04962946, L(C2) ≈ 11.61349340, L(C3) ≈ 11.61349340.

We know that C1(t) and C2(t) are the curves in S passing through both pN

and pS , i.e., C1(0) = C2(0) = pS and C1(∞) = C2(∞) = pN and

L({C1(t) | 0 ≤ t ≤ ∞}) > L({C2(t) | 0 ≤ t ≤ ∞}).
So, we have:

Proposition 4.1. Every minimal geodesic curve in C1 is not minimal in S

Remind that the ellipsoid S is a simply connected complete (compact)
Kähler manifold and the curve C1 is a closed complete totally geodesic sub-
manifold of S. Hence, Proposition 4.1 implies that the following question is
not true.

Question 4.1. Let M be a simply connected complete Kähler manifold and
N a closed complete totally geodesic submanifold of M . Then every minimal
geodesic in N is also minimal in M .

That is, the condition that N is complex in Question 2.1 [4] can not be
dropped in order to be a true statement, although we don’t know whether it is
true or not.

Remark 4.1. Using MAPLE [3], we see that the below curves are not geodesic
in the ellipsoid S.

C4(t) := (πN ◦ f)−1(t, t) for t ∈ [−∞,∞]

C5(t) := (πN ◦ f)−1(t,−t) for t ∈ [−∞,∞].

Note that Figure 1-(b) is the picture of a geodesic curve (πN ◦ f)−1C(t) on
S such that C(0) = (0, 0) and C ′(0) = (1, 1). But they are all the closed
curves in S passing through both pN and pS , i.e., C4(0) = C5(0) = pS and
C4(∞) = C5(∞) = pN . Furthermore,

L(C4) = L(C5) ≈ 12.92772026.
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