CHARACTERIZATIONS OF RAPIDLY DECREASING GENERALIZED FUNCTIONS

CHIKH BOUZAR AND TAYEB SAIDI

ABSTRACT. The well-known characterizations of the Schwartz space of rapidly decreasing functions is extended to new algebras of rapidly decreasing generalized functions.

1. Introduction

The Schwartz space S of rapidly decreasing functions on \mathbb{R}^n and its different generalizations, in view of their importance in analysis, have been characterized differently by many authors, e.g. see [17], [12], [14], [4], [9] and [1]. Recall that

$$S = \left\{ f \in \mathcal{C}^{\infty} : \forall \alpha \in \mathbb{Z}_{+}^{n}, \forall \beta \in \mathbb{Z}_{+}^{n}, \sup_{x \in \mathbb{R}^{n}} \left| x^{\beta} \partial^{\alpha} f(x) \right| < \infty \right\},\$$

and let

$$\mathcal{S}^{*} = \left\{ f \in \mathcal{C}^{\infty} : \forall \alpha \in \mathbb{Z}_{+}^{n}, \sup_{x \in \mathbb{R}^{n}} |\partial^{\alpha} f(x)| < \infty \right\},\$$
$$\mathcal{S}_{*} = \left\{ f \in \mathcal{C}^{\infty} : \forall \beta \in \mathbb{Z}_{+}^{n}, \sup_{x \in \mathbb{R}^{n}} |x^{\beta} f(x)| < \infty \right\},\$$

then the characterization of S given in [4] is the result:

(1) $\mathcal{S} = \mathcal{S}^* \cap \mathcal{S}_*.$

To built a Fourier analysis within the new generalized functions of [5], the algebra of rapidly decreasing generalized functions on \mathbb{R}^n , denoted \mathcal{G}_S , was first constructed in [15] and recently studied in [7] and [6]. The algebra of regular rapidly decreasing generalized functions on \mathbb{R}^n , denoted \mathcal{G}_S^{∞} , is fundamental in the study of local regularity of a Colombeau generalized functions and also for developing a generalized microlocal analysis.

The purpose of this work is to lift the characterizations of the Schwartz space $S = S^* \cap S_*$ to the algebras \mathcal{G}_S and \mathcal{G}_S^{∞} . Actually we do more, these characterizations are given in the general context of the algebras $\mathcal{G}_S^{\mathcal{R}}(\Omega)$ of

O2010 The Korean Mathematical Society

Received May 6, 2009; Revised April 22, 2010.

²⁰⁰⁰ Mathematics Subject Classification. 46F30, 46F05, 42B10.

Key words and phrases. Schwartz space, rapidly decreasing generalized functions, Colombeau algebra, Fourier transform.

 \mathcal{R} -rapidly decreasing generalized functions on an open set Ω of \mathbb{R}^n , see [6] and [2]. Section 2 recall the notion of regular set of sequences. Sections 3, 4 and 5 introduce, respectively, the algebra of \mathcal{R} -bounded generalized functions, the algebra of \mathcal{R} -roughly decreasing generalized functions and the algebra of \mathcal{R} rapidly decreasing generalized functions. Section 6 gives the characterization of the algebra $\mathcal{G}_{\mathcal{S}}^{\mathcal{R}}(\Omega)$, provided Ω is a box of \mathbb{R}^{n} , and as corollaries of this result we obtain the characterizations of the classical algebras $\mathcal{G}_{\mathcal{S}}$ and $\mathcal{G}_{\mathcal{S}}^{\infty}$. Finally, Section 7 gives the characterization of $\mathcal{G}_{\mathcal{S}}^{\mathcal{R}}(\mathbb{R}^n)$ using the Fourier transform.

2. Regular set of sequences

Recall the definition of a regular set of sequences introduced in [6], see [2].

Definition. A non void subset \mathcal{R} of $\mathbb{R}^{\mathbb{Z}_+}_+$ is said to be regular, if For all $(N_m)_{m \in \mathbb{Z}_+} \in \mathcal{R}$ and $(k, k') \in \mathbb{Z}^2_+$, there exists $(N'_m)_{m \in \mathbb{Z}_+} \in \mathcal{R}$ such that

(R1)
$$N_{m+k} + k' \le N'_m, \forall m \in \mathbb{Z}_+$$

For all $(N_m)_{m \in \mathbb{Z}_+}$ and $(N'_m)_{m \in \mathbb{Z}_+}$ in \mathcal{R} , there exists $(N''_m)_{m \in \mathbb{Z}_+} \in \mathcal{R}$ such that

(R2)
$$\max(N_m, N'_m) \le N''_m, \forall m \in \mathbb{Z}_+.$$

For all $(N_m)_{m \in \mathbb{Z}_+}$ and $(N'_m)_{m \in \mathbb{Z}_+}$ in \mathcal{R} , there exists $(N^n_m)_{m \in \mathbb{Z}_+} \in \mathcal{R}$ such that

(R3)
$$N_{m_1} + N'_{m_2} \le N''_{m_1+m_2}, \forall (m_1, m_2) \in \mathbb{Z}^2_+$$

The notion of regular set is extended to the sets of double sequences.

Definition. A non void subset $\widetilde{\mathcal{R}}$ of $\mathbb{R}^{\mathbb{Z}^2_+}_+$ is said to be regular if

For all $(N_{q,l})_{(q,l)\in\mathbb{Z}^2_+}\in\widetilde{\mathcal{R}}$ and $(k,k',k'')\in\mathbb{Z}^3_+$, there exists $\left(N'_{q,l}\right)_{(q,l)\in\mathbb{Z}^2}\in$

 \mathcal{R} such that

$$(\widetilde{R}1) N_{q+k,l+k'} + k'' \le N'_{q,l} , \forall (q,l) \in \mathbb{Z}^2_+$$

For all $(N_{q,l})_{(q,l)\in\mathbb{Z}^2_+}$ and $\left(N'_{q,l}\right)_{(q,l)\in\mathbb{Z}^2_+}$ in $\widetilde{\mathcal{R}}$, there exists $(N"_{q,l})_{(q,l)\in\mathbb{Z}^2_+}\in\mathbb{Z}^2_+$

 $\widetilde{\mathcal{R}}$ such that

$$(\tilde{R}2) \qquad \max\left(N_{q,l}, N'_{q,l}\right) \le N_{q,l}^{*}, \,\forall (q,l) \in \mathbb{Z}_{+}^{2}$$

For all $(N_{q,l})_{(q,l)\in\mathbb{Z}^2_+}$ and $\left(N'_{q,l}\right)_{(q,l)\in\mathbb{Z}^2_+}$ in $\widetilde{\mathcal{R}}$, there exists $(N"_{q,l})_{(q,l)\in\mathbb{Z}^2_+}\in\mathbb{Z}^2_+$ \mathcal{R} such that

$$(\widetilde{R}3) N_{q_1,l_1} + N'_{q_2,l_2} \le N''_{q_1+q_2,l_1+l_2} , \forall (q_1,q_2,l_1,l_2) \in \mathbb{Z}_+^4 .$$

Example 2.1. i) The set $\mathbb{R}^{\mathbb{Z}_+}_+$ of all positive sequences is regular. ii) The set \mathcal{A} of affine sequences defined by

$$\mathcal{A} = \left\{ (N_m)_{m \in \mathbb{N}} \in \mathbb{R}_+^{\mathbb{Z}_+} : \exists a \ge 0, \exists b \ge 0, \forall m \in \mathbb{Z}_+, N_m \le am + b \right\}$$

is regular.

- iii) The set \mathcal{B} of all bounded sequences of $\mathbb{R}^{\mathbb{Z}_+}_+$ is regular.
- iv) The set $\mathbb{R}^{\mathbb{Z}^2_+}_+$ of all positive double sequences is regular.
- v) The set $\widetilde{\mathcal{B}}$ of all bounded sequences of $\mathbb{R}^{\mathbb{Z}^2_+}_+$ is regular.

We give the following results, easy to prove, needed in the formulation of the principal theorems of this paper.

Lemma 2.2. Let $\widetilde{\mathcal{R}}$ be a regular subset of $\mathbb{R}^{\mathbb{Z}^2_+}_+$. Then

(i) The subset
$$\widetilde{\mathcal{R}}^0 := \left\{ N_{.,0} : N \in \widetilde{\mathcal{R}} \right\}$$
 is regular in $\mathbb{R}^{\mathbb{Z}_+}_+$.

(ii) The subset $\widetilde{\mathcal{R}}_0 := \left\{ N_{0,.} : N \in \widetilde{\mathcal{R}} \right\}$ is regular in $\mathbb{R}^{\mathbb{Z}_+}_+$.

3. The algebra of \mathcal{R} -bounded generalized functions

We adopt the standard notations and definitions of distributions and Colombeau algebra, see [11] and [10].

Let

$$\mathcal{S}^{*}\left(\Omega\right) = \left\{ f \in \mathcal{C}^{\infty}\left(\Omega\right) : \forall \alpha \in \mathbb{Z}_{+}^{n}, \sup_{x \in \Omega} \left|\partial^{\alpha} f\left(x\right)\right| < \infty \right\},$$

and \mathcal{R} be a regular subset of $\mathbb{R}^{\mathbb{Z}_+}_+$, if we define

$$\mathcal{E}_{\mathcal{S}^{*}}^{\mathcal{R}}\left(\Omega\right) = \left\{ \left(u_{\epsilon}\right)_{\epsilon} \in \mathcal{S}^{*}\left(\Omega\right)^{I} : \exists N \in \mathcal{R}, \forall \alpha \in \mathbb{Z}_{+}^{n}, \sup_{x \in \Omega} \left|\partial^{\alpha} u_{\epsilon}\left(x\right)\right| = O\left(\epsilon^{-N_{|\alpha|}}\right), \epsilon \to 0 \right\}, \\ \mathcal{N}_{\mathcal{S}^{*}}^{\mathcal{R}}\left(\Omega\right) = \left\{ \left(u_{\epsilon}\right)_{\epsilon} \in \mathcal{S}^{*}\left(\Omega\right)^{I} : \forall N \in \mathcal{R}, \forall \alpha \in \mathbb{Z}_{+}^{n}, \sup_{x \in \Omega} \left|\partial^{\alpha} u_{\epsilon}\left(x\right)\right| = O\left(\epsilon^{N_{|\alpha|}}\right), \epsilon \to 0 \right\},$$

where I = [0, 1], then the properties of $\mathcal{E}_{S^*}^{\mathcal{R}}(\Omega)$ and $\mathcal{N}_{S^*}^{\mathcal{R}}(\Omega)$ are given by the following results.

Proposition 3.1. (i) The space $\mathcal{E}_{\mathcal{S}^*}^{\mathcal{R}}(\Omega)$ is a subalgebra of $\mathcal{S}^*(\Omega)^I$. (ii) The space $\mathcal{N}_{\mathcal{S}^*}^{\mathcal{R}}(\Omega)$ is an ideal of $\mathcal{E}_{\mathcal{S}^*}^{\mathcal{R}}(\Omega)$. (iii) We have $\mathcal{N}_{\mathcal{S}^*}^{\mathcal{R}}(\Omega) = \mathcal{N}_{\mathcal{S}^*}(\Omega)$, where

$$\mathcal{N}_{\mathcal{S}^{*}}\left(\Omega\right) = \left\{\left(u_{\epsilon}\right)_{\epsilon} \in \mathcal{S}^{*}\left(\Omega\right)^{I} : \forall m \in \mathbb{Z}_{+}, \forall \alpha \in \mathbb{Z}_{+}^{n}, \sup_{x \in \Omega} \left|\partial^{\alpha} u_{\epsilon}\left(x\right)\right| = O\left(\epsilon^{m}\right), \epsilon \to 0\right\}.$$

Proof. Follows easily from the definitions and standard arguments of Colombeau algebras, see [10].

Definition. An open subset Ω of \mathbb{R}^n is said to be a box, if

$$\Omega = \mathbf{I}_1 \times \mathbf{I}_2 \times \cdots \times \mathbf{I}_n,$$

where each \mathbf{I}_i is a finite or infinite open interval of \mathbb{R} .

We have also the null characterization of the ideal $\mathcal{N}_{\mathcal{S}^*}(\Omega)$ provided Ω is a box.

Proposition 3.2. Let Ω be a box. Then an element $(u_{\epsilon})_{\epsilon} \in \mathcal{E}_{\mathcal{S}^*}^{\mathcal{R}}(\Omega)$ belongs to $\mathcal{N}_{\mathcal{S}^*}(\Omega)$ if and only if the following condition is satisfied,

(2)
$$\forall m \in \mathbb{Z}_{+}, \sup_{x \in \Omega} |u_{\epsilon}(x)| = O(\epsilon^{m}), \ \epsilon \to 0.$$

Proof. Suppose that $(u_{\epsilon})_{\epsilon} \in \mathcal{E}_{\mathcal{S}^*}^{\mathcal{R}}(\Omega)$ satisfies (2). It suffices to show that $(\partial_i u_{\epsilon})_{\epsilon}$ satisfies the $\mathcal{N}_{\mathcal{S}^*}(\Omega)$ estimates for all $i = 1, \ldots, n$. Suppose that u_{ϵ} is real valued, in the complex case, we shall carry out the following calculus separately on its real and imaginary part. Let $m \in \mathbb{Z}_+$, we have to show that

$$\sup_{x\in\Omega}\left|\partial_{i}u_{\epsilon}\left(x\right)\right|=O\left(\epsilon^{m}\right),\ \epsilon\to0.$$

Since $(u_{\epsilon})_{\epsilon} \in \mathcal{E}_{S^*}^{\mathcal{R}}(\Omega)$, then

(3)
$$\exists N \in \mathcal{R}, \sup_{x \in \Omega} \left| \partial_i^2 u_\epsilon(x) \right| = O\left(\epsilon^{-N_2} \right), \ \epsilon \to 0.$$

Since $(u_{\epsilon})_{\epsilon}$ satisfies (2), we have

(4)
$$\sup_{x \in \Omega} |u_{\epsilon}(x)| = O\left(\epsilon^{N_2 + 2m}\right), \ \epsilon \to 0.$$

By Taylor's formula, we have

$$u_{\epsilon}\left(x+\epsilon^{N_{2}+m}e_{i}\right)=u_{\epsilon}\left(x\right)+\partial_{i}u_{\epsilon}\left(x\right)\epsilon^{N_{2}+m}+\frac{1}{2}\partial_{i}^{2}u_{\epsilon}\left(x+\theta\epsilon^{N_{2}+m}e_{i}\right)\epsilon^{2\left(N_{2}+m\right)},$$

where $\theta \in [0, 1[$ and ϵ is sufficiently small, as Ω is a box. It follows that

$$\begin{aligned} |\partial_{i}u_{\epsilon}(x)| &\leq \underbrace{\left|u_{\epsilon}\left(x+\epsilon^{N_{2}+m}e_{i}\right)\right|\epsilon^{-N_{2}-m}}_{(*)} + \underbrace{\left|u_{\epsilon}\left(x\right)\right|\epsilon^{-N_{2}-m}}_{(**)} + \\ &+\underbrace{\epsilon^{N_{2}+m}\left|\partial_{i}^{2}u_{\epsilon}\left(x+\theta\epsilon^{N_{2}+m}e_{i}\right)\right|}_{(***)}. \end{aligned}$$

From (4), we have that (*) and (**) are of order $O(\epsilon^m)$, $\epsilon \to 0$, and from (3), we have that (***) is of order $O(\epsilon^m)$, $\epsilon \to 0$.

Definition. Let \mathcal{R} be a regular subset of $\mathbb{R}^{\mathbb{Z}_+}_+$, the algebra of \mathcal{R} -bounded generalized functions, denoted by $\mathcal{G}^{\mathcal{R}}_{\mathcal{S}^*}(\Omega)$, is the quotient algebra

(5)
$$\mathcal{G}_{\mathcal{S}^*}^{\mathcal{R}}\left(\Omega\right) = \frac{\mathcal{E}_{\mathcal{S}^*}^{\mathcal{R}}\left(\Omega\right)}{\mathcal{N}_{\mathcal{S}^*}\left(\Omega\right)}$$

Remark 3.3. When \mathcal{R} is the set of all positive sequences, the algebra $\mathcal{G}_{\mathcal{S}^*}^{\mathcal{R}}(\Omega)$ is denoted by $\mathcal{G}_{L^{\infty}}(\Omega)$ in [3], this algebra is constructed on the differential algebra $D_{L^{\infty}}(\Omega)$ of Schwartz [16]. So it is more correct to write $\mathcal{G}_{L^{\infty}}^{\mathcal{R}}(\Omega)$ instead of $\mathcal{G}_{\mathcal{S}^*}^{\mathcal{R}}(\Omega)$.

4. The algebra of \mathcal{R} -roughly decreasing generalized functions

Let

$$\mathcal{S}_{*}\left(\Omega\right) = \left\{ f \in \mathcal{C}^{\infty}\left(\Omega\right) : \forall \beta \in \mathbb{Z}_{+}^{n}, \sup_{x \in \Omega} \left| x^{\beta} f\left(x\right) \right| < \infty \right\},\$$

and \mathcal{R} be a regular subset of $\mathbb{R}^{\mathbb{Z}_+}_+$, if we define

$$\mathcal{E}_{\mathcal{S}_{*}}^{\mathcal{R}}\left(\Omega\right) = \left\{ \begin{array}{l} \left(u_{\epsilon}\right)_{\epsilon} \in \mathcal{S}_{*}\left(\Omega\right)^{I} : \exists N \in \mathcal{R}, \forall \beta \in \mathbb{Z}_{+}^{n}, \\ \sup_{x \in \Omega} \left|x^{\beta}u_{\epsilon}\left(x\right)\right| = O\left(\epsilon^{-N_{|\beta|}}\right), \epsilon \to 0 \end{array} \right\}, \\ \mathcal{N}_{\mathcal{S}_{*}}^{\mathcal{R}}\left(\Omega\right) = \left\{ \begin{array}{l} \left(u_{\epsilon}\right)_{\epsilon} \in \mathcal{S}_{*}\left(\Omega\right)^{I} : \forall N \in \mathcal{R}, \forall \beta \in \mathbb{Z}_{+}^{n}, \\ \sup_{x \in \Omega} \left|x^{\beta}u_{\epsilon}\left(x\right)\right| = O\left(\epsilon^{N_{|\beta|}}\right), \epsilon \to 0 \end{array} \right\}, \end{array}$$

then the following properties of $\mathcal{E}_{\mathcal{S}_{*}}^{\mathcal{R}}(\Omega)$ and $\mathcal{N}_{\mathcal{S}_{*}}^{\mathcal{R}}(\Omega)$ are easy to verify.

Proposition 4.1. (i) The space $\mathcal{E}_{\mathcal{S}_*}^{\mathcal{R}}(\Omega)$ is a subalgebra of $\mathcal{S}_*(\Omega)^I$. (ii) The space $\mathcal{N}_{\mathcal{S}_*}^{\mathcal{R}}(\Omega)$ is an ideal of $\mathcal{E}_{\mathcal{S}_*}^{\mathcal{R}}(\Omega)$. (iii) We have $\mathcal{N}_{\mathcal{S}_*}^{\mathcal{R}}(\Omega) = \mathcal{N}_{\mathcal{S}_*}(\Omega)$, where

$$\mathcal{N}_{\mathcal{S}_{*}}\left(\Omega\right) = \left\{ \begin{array}{c} \left(u_{\epsilon}\right)_{\epsilon} \in \mathcal{S}_{*}\left(\Omega\right)^{I} : \forall m \in \mathbb{Z}_{+}, \forall \beta \in \mathbb{Z}_{+}^{n}, \\ \sup_{x \in \Omega} \left|x^{\beta}u_{\epsilon}\left(x\right)\right| = O\left(\epsilon^{m}\right), \epsilon \to 0 \end{array} \right\}.$$

The following proposition characterizes $\mathcal{N}_{\mathcal{S}_{*}}(\Omega)$.

Proposition 4.2. Let $(u_{\epsilon})_{\epsilon} \in \mathcal{E}_{\mathcal{S}_{*}}^{\mathcal{R}}(\Omega)$. Then $(u_{\epsilon})_{\epsilon} \in \mathcal{N}_{\mathcal{S}_{*}}(\Omega)$ if and only if the following condition is satisfied,

(6)
$$\forall m \in \mathbb{Z}_+, \sup_{x \in \Omega} |u_{\epsilon}(x)| = O(\epsilon^m), \ \epsilon \to 0.$$

Proof. Suppose that $(u_{\epsilon})_{\epsilon} \in \mathcal{E}_{\mathcal{S}_{*}}^{\mathcal{R}}(\Omega)$ satisfies (6). Since $(u_{\epsilon})_{\epsilon} \in \mathcal{E}_{\mathcal{S}_{*}}^{\mathcal{R}}(\Omega)$, then $\exists N \in \mathcal{R}, \forall \beta \in \mathbb{Z}_{+}^{n}$,

$$\sup_{x \in \Omega} \left| x^{2\beta} u_{\epsilon} \left(x \right) \right| = O\left(\epsilon^{-N_{2|\beta|}} \right), \ \epsilon \to 0.$$

From (6), for all $m \in \mathbb{Z}_+$ we have

$$\sup_{x\in\Omega}\left|u_{\epsilon}\left(x\right)\right|=O\left(\epsilon^{2m+N_{2\left|\beta\right|}}\right),\ \epsilon\rightarrow0.$$

Therefore $\forall x \in \Omega$,

$$\left|x^{\beta}u_{\epsilon}\left(x\right)\right|^{2} = \left|x^{2\beta}u_{\epsilon}\left(x\right)\right|\left|u_{\epsilon}\left(x\right)\right| = O\left(\epsilon^{2m}\right), \ \epsilon \to 0,$$

hence

$$\left|x^{\beta}u_{\epsilon}\left(x\right)\right| = O\left(\epsilon^{m}\right), \ \epsilon \to 0.$$

Definition. Let \mathcal{R} be a regular subset of $\mathbb{R}^{\mathbb{Z}_+}_+$, the algebra of \mathcal{R} -roughly decreasing generalized functions, denoted by $\mathcal{G}^{\mathcal{R}}_{\mathcal{S}_*}(\Omega)$, is the quotient algebra

$$\mathcal{G}_{\mathcal{S}_{*}}^{\mathcal{R}}\left(\Omega\right) = \frac{\mathcal{E}_{\mathcal{S}_{*}}^{\mathcal{R}}\left(\Omega\right)}{\mathcal{N}_{\mathcal{S}_{*}}\left(\Omega\right)}$$

Remark 4.3. The C^{∞} regularity in the definition of elements of $\mathcal{G}_{\mathcal{S}_*}^{\mathcal{R}}(\Omega)$ is not in fact needed in the proof of the principal results of this work.

5. The algebra of $\widetilde{\mathcal{R}}$ -rapidly decreasing generalized functions

Recall

$$\mathcal{S}\left(\Omega\right) = \left\{ f \in \mathcal{C}^{\infty}\left(\Omega\right) : \forall (\alpha, \beta) \in \mathbb{Z}_{+}^{2n}, \sup_{x \in \Omega} \left| x^{\beta} \partial^{\alpha} f\left(x\right) \right| < \infty \right\}$$

the space of rapidly decreasing functions on Ω , and let $\widetilde{\mathcal{R}}$ be a regular subset of $\mathbb{R}_{+}^{\hat{\mathbb{Z}}_{+}^{2}}$, if we define

$$\mathcal{E}_{\mathcal{S}}^{\widetilde{\mathcal{R}}}\left(\Omega\right) = \left\{ \begin{array}{l} \left(u_{\epsilon}\right)_{\epsilon} \in \mathcal{S}\left(\Omega\right)^{I} : \exists N \in \widetilde{\mathcal{R}}, \forall (\alpha, \beta) \in \mathbb{Z}_{+}^{2n}, \\ \sup_{x \in \Omega} \left| x^{\beta} \partial^{\alpha} u_{\epsilon}\left(x\right) \right| = O\left(\epsilon^{-N_{|\alpha|, |\beta|}}\right), \epsilon \to 0 \end{array} \right\}, \\ \mathcal{N}_{\mathcal{S}}^{\widetilde{\mathcal{R}}}\left(\Omega\right) = \left\{ \begin{array}{l} \left(u_{\epsilon}\right)_{\epsilon} \in \mathcal{S}\left(\Omega\right)^{I} : \forall N \in \widetilde{\mathcal{R}}, \forall (\alpha, \beta) \in \mathbb{Z}_{+}^{2n}, \\ \sup_{x \in \Omega} \left| x^{\beta} \partial^{\alpha} u_{\epsilon}\left(x\right) \right| = O\left(\epsilon^{N_{|\alpha|, |\beta|}}\right), \epsilon \to 0 \end{array} \right\}, \end{array}$$

then we have the following results.

Proposition 5.1. We have the following assertions:

- (i) The space \$\mathcal{E}_{S}^{\mathcal{R}}(\Omega)\$ is a subalgebra of \$\mathcal{S}(\Omega)^{I}\$.
 (ii) The space \$\mathcal{N}_{S}^{\mathcal{R}}(\Omega)\$ is an ideal of \$\mathcal{E}_{S}^{\mathcal{R}}(\Omega)\$.
 (iii) We have \$\mathcal{N}_{S}^{\mathcal{R}}(\Omega) = \mathcal{N}_{S}(\Omega)\$, where

$$\mathcal{N}_{\mathcal{S}}\left(\Omega\right) = \left\{ \begin{array}{c} \left(u_{\epsilon}\right)_{\epsilon} \in \mathcal{S}\left(\Omega\right)^{I} : \forall m \in \mathbb{Z}_{+}, \forall (\alpha, \beta) \in \mathbb{Z}_{+}^{2n}, \\ \sup_{x \in \Omega} \left|x^{\beta} \partial^{\alpha} u_{\epsilon}\left(x\right)\right| = O\left(\epsilon^{m}\right), \epsilon \to 0 \end{array} \right\}.$$

Proof. The proof is not difficult, it follows from the properties of the set \mathcal{R} . \Box

Definition. Let $\widetilde{\mathcal{R}}$ be a regular subset of $\mathbb{R}^{\mathbb{Z}^2_+}_+$, the algebra of $\widetilde{\mathcal{R}}$ -rapidly decreasing generalized functions on Ω , denoted by $\mathcal{G}^{\widetilde{\mathcal{R}}}_{\mathcal{S}}(\Omega)$, is the quotient algebra

$$\mathcal{G}_{\mathcal{S}}^{\widetilde{\mathcal{R}}}\left(\Omega\right) = \frac{\mathcal{E}_{\mathcal{S}}^{\mathcal{R}}\left(\Omega\right)}{\mathcal{N}_{\mathcal{S}}\left(\Omega\right)} \ .$$

Example 5.2. (i) For $\widetilde{\mathcal{R}} = \mathbb{R}_{+}^{\mathbb{Z}_{+}^{2}}$, we obtain the algebra $\mathcal{G}_{\mathcal{S}}(\Omega)$ of rapidly decreasing generalized functions on Ω , see [10].

(ii) For $\widetilde{\mathcal{R}} = \widetilde{\mathcal{B}}$, we obtain the algebra $\mathcal{G}^{\infty}_{\mathcal{S}}(\Omega)$ of regular rapidly decreasing generalized functions on Ω , see [7].

CHARACTERIZATIONS OF RAPIDLY DECREASING GENERALIZED FUNCTIONS 397

6. Characterization of $\widetilde{\mathcal{R}}$ -rapidly decreasing generalized functions

Let us mention that the theorem of [4] can be extended to an open subset Ω of \mathbb{R}^n , provided Ω is a box.

Proposition 6.1. If Ω is a box of \mathbb{R}^n , then

(7)
$$\mathcal{S}(\Omega) = \mathcal{S}^*(\Omega) \cap \mathcal{S}_*(\Omega) .$$

Proof. The proof is the same as in [4], noting that in the Taylor's expansion, the hypothesis that Ω is a box assures that $(x_1 + h, x')$ stays in Ω for all $(x_1, x') \in \Omega$ and h > 0 sufficiently small.

The principal result of this section is an extension of (7) to the algebra of $\widetilde{\mathcal{R}}$ -rapidly decreasing generalized functions. It is the first characterization of the algebra $\mathcal{G}_{\mathcal{S}}^{\widetilde{\mathcal{R}}}(\Omega)$ in the spirit of (7).

Theorem 6.2. If Ω is a box, then

(8)
$$\mathcal{G}_{\mathcal{S}}^{\widetilde{\mathcal{R}}}\left(\Omega\right) = \mathcal{G}_{\mathcal{S}_{*}}^{\widetilde{\mathcal{R}}_{0}}\left(\Omega\right) \cap \mathcal{G}_{\mathcal{S}^{*}}^{\widetilde{\mathcal{R}}^{0}}\left(\Omega\right)$$

Proof. We have to show that $\mathcal{E}_{\mathcal{S}}^{\tilde{\mathcal{R}}}(\Omega) = \mathcal{E}_{\mathcal{S}_*}^{\tilde{\mathcal{R}}_0}(\Omega) \cap \mathcal{E}_{\mathcal{S}_*}^{\tilde{\mathcal{R}}^0}(\Omega)$ and $\mathcal{N}_{\mathcal{S}}(\Omega) = \mathcal{N}_{\mathcal{S}_*}(\Omega) \cap \mathcal{N}_{\mathcal{S}^*}(\Omega)$. The inclusions $\mathcal{E}_{\mathcal{S}}^{\tilde{\mathcal{R}}}(\Omega) \subset \mathcal{E}_{\mathcal{S}_*}^{\tilde{\mathcal{R}}_0}(\Omega) \cap \mathcal{E}_{\mathcal{S}^*}^{\tilde{\mathcal{R}}^0}(\Omega)$ and $\mathcal{N}_{\mathcal{S}}(\Omega) \subset \mathcal{N}_{\mathcal{S}_*}(\Omega) \cap \mathcal{N}_{\mathcal{S}^*}(\Omega)$ are obvious. In order to show the inclusion $\mathcal{E}_{\mathcal{S}_*}^{\tilde{\mathcal{R}}_0}(\Omega) \cap \mathcal{E}_{\mathcal{S}^*}^{\tilde{\mathcal{R}}^0}(\Omega) \subset \mathcal{E}_{\mathcal{S}^*}^{\tilde{\mathcal{R}}_0}(\Omega) \subset \mathcal{E}_{\mathcal{S}}^{\tilde{\mathcal{R}}_0}(\Omega)$, then $(u_{\epsilon})_{\epsilon} \in \mathcal{S}^*(\Omega)^I \cap \mathcal{E}_{\mathcal{S}^*}^{\tilde{\mathcal{R}}^0}(\Omega)$, then $(u_{\epsilon})_{\epsilon} \in \mathcal{S}^*(\Omega)^I \cap \mathcal{S}_*(\Omega)^I = \mathcal{S}(\Omega)^I$. In order to show that $(u_{\epsilon})_{\epsilon}$ satisfies the estimates of $\mathcal{E}_{\mathcal{S}}^{\tilde{\mathcal{R}}}(\Omega)$, set $x = (x_1, x') \in \mathbf{I}_1 \times (\mathbf{I}_2 \times \mathbf{I}_3 \times \cdots \times \mathbf{I}_n) := \Omega$ and consider in first the case $x_1 > 0$. For h > 0 sufficiently small, the Taylor's expansion of u_{ϵ} with respect to x_1 gives

(9)
$$u_{\epsilon}(x_{1}+h,x') = u_{\epsilon}(x_{1},x') + h\partial_{1}u_{\epsilon}(x_{1},x') + \frac{h^{2}}{2}\partial_{1}^{2}u_{\epsilon}(\xi,x')$$

for $\xi \in]x_1, x_1 + h[$. The hypothesis $(u_{\epsilon})_{\epsilon} \in \mathcal{E}_{\mathcal{S}_*}^{\tilde{\mathcal{R}}_0}(\Omega) \cap \mathcal{E}_{\mathcal{S}^*}^{\tilde{\mathcal{R}}_0}(\Omega)$ gives

$$\exists L \in \widetilde{\mathcal{R}}_{0}; \forall k \in \mathbb{Z}_{+}, \sup_{x_{1} > 0} \left(1 + \left| x \right|^{2} \right)^{k} \left| u_{\epsilon} \left(x \right) \right| = O\left(\epsilon^{-L_{k}} \right), \epsilon \to 0,$$

$$\sup_{x_1>0} \left(1+|x|^2\right)^k |u_\epsilon \left(x_1+h, x'\right)| \le \sup_{x_1>0} \left(1+\left|(x_1+h, x')\right|^2\right)^k |u_\epsilon \left(x_1+h, x'\right)|$$
$$= O\left(\epsilon^{-L_k}\right), \epsilon \to 0,$$
$$\exists M \in \widetilde{\mathcal{R}}^0, \sup_{x_1>0} \left|\partial_1^2 u_\epsilon \left(x\right)\right| = O\left(\epsilon^{-M_2}\right), \epsilon \to 0.$$

It follows from (9) that

$$|\partial_1 u_{\epsilon}(x_1, x')| \le \frac{1}{h} \left[|u_{\epsilon}(x_1 + h, x')| + |u_{\epsilon}(x_1, x')| \right] + \frac{h}{2} \left| \partial_1^2 u_{\epsilon}(\xi, x') \right|.$$

Therefore

$$\sup_{x_1>0} \left(1+\left|x\right|^2\right)^{\kappa} \left|\partial_1 u_{\epsilon}\left(x\right)\right|^2 = O\left(\epsilon^{-L_k-M_2}\right), \epsilon \to 0.$$

From $(\widetilde{R}3)$ of Definition, there exists $N' \in \widetilde{\mathcal{R}}$ such that

1

$$L_k + M_2 \le N'_{2,k} \; .$$

Consequently

$$\sup_{x_1 > 0} \left(1 + |x|^2 \right)^k |\partial_1 u_{\epsilon} (x)|^2 = O\left(\epsilon^{-N'_{2,k}} \right), \epsilon \to 0.$$

So if $\beta \in \mathbb{Z}^n_+$, then

$$\sup_{x_1>0} \left| x^{\beta} \partial_1 u_{\epsilon} \left(x \right) \right|^2 \le C \sup_{x_1>0} \left(1 + \left| x \right|^2 \right)^{\left| \beta \right|} \left| \partial_1 u_{\epsilon} \left(x \right) \right|^2 = O\left(\epsilon^{-N'_{2,\left| \beta \right|}} \right), \epsilon \to 0.$$

If $x_1 < 0$, one considers v_{ϵ} such that $v_{\epsilon}(x) = u_{\epsilon}(-x_1, x')$. We see that $(v_{\epsilon})_{\epsilon} \in \mathcal{E}_{\mathcal{S}_*}^{\widetilde{\mathcal{R}}_0}(\Omega) \cap \mathcal{E}_{\mathcal{S}^*}^{\widetilde{\mathcal{R}}^0}(\Omega)$ and consequently the precedent argument gives the existence of $N^{"} \in \widetilde{\mathcal{R}}$ such that

$$\sup_{x_{1}>0}\left|x^{\beta}\partial_{1}v_{\epsilon}\left(x\right)\right|^{2}=\sup_{x_{1}<0}\left|x^{\beta}\partial_{1}u_{\epsilon}\left(x\right)\right|^{2}=O\left(\epsilon^{-N^{*}}\left(x^{\beta}\right),\epsilon\rightarrow0.$$

Now from $(\widetilde{R}1)$ and $(\widetilde{R}2)$ of Definition, there exists $N \in \widetilde{\mathcal{R}}$ such that

$$\max\left(N_{2,|\beta|}', N_{2,|\beta|}'\right) \le N_{1,|\beta|},$$

consequently

$$\sup_{x \in \Omega} \left| x^{\beta} \partial_{1} u_{\epsilon} \left(x \right) \right| = O \left(\epsilon^{-N_{1,|\beta|}} \right), \epsilon \to 0.$$

In a similar way, we show

$$\exists N \in \widetilde{\mathcal{R}}; \forall \beta \in \mathbb{Z}_{+}^{n}, \sup_{x \in \Omega} \left| x^{\beta} \partial_{i} u_{\epsilon} \left(x \right) \right| = O\left(\epsilon^{-N_{1,|\beta|}} \right), i = 2, \dots, n.$$

Therefore, by induction, we obtain

$$\exists N \in \widetilde{\mathcal{R}}; \forall \alpha \in \mathbb{Z}_{+}^{n}, \forall \beta \in \mathbb{Z}_{+}^{n}, \sup_{x \in \Omega} \left| x^{\beta} \partial^{\alpha} u_{\epsilon} \left(x \right) \right| = O\left(\epsilon^{-N_{\left| \alpha \right|, \left| \beta \right|}} \right), \epsilon \to 0,$$

i.e.,
$$(u_{\epsilon})_{\epsilon} \in \mathcal{E}_{\mathcal{S}}^{\widetilde{\mathcal{R}}}(\Omega)$$
.
Suppose now that $(u_{\epsilon})_{\epsilon} \in \mathcal{N}_{\mathcal{S}_{*}}(\Omega) \cap \mathcal{N}_{\mathcal{S}^{*}}(\Omega)$. Then
 $\forall m \in \mathbb{Z}_{+}, \forall k \in \mathbb{Z}_{+}, \sup_{x_{1}>0} \left(1+|x|^{2}\right)^{k} |u_{\epsilon}(x)| = O\left(\epsilon^{\frac{m}{2}}\right), \epsilon \to 0,$
 $\sup_{x_{1}>0} \left(1+|x|^{2}\right)^{k} |u_{\epsilon}(x_{1}+h,x')| \leq \sup_{x_{1}>0} \left(1+|(x_{1}+h,x')|^{2}\right)^{k} |u_{\epsilon}(x_{1}+h,x')|$
 $= O\left(\epsilon^{\frac{m}{2}}\right), \epsilon \to 0,$
 $\forall m \in \mathbb{Z}_{+}; \sup_{x_{1}>0} \left|\partial_{1}^{2}u_{\epsilon}(x)\right| = O\left(\epsilon^{\frac{m}{2}}\right), \epsilon \to 0.$

It follows from (9) that

$$\sup_{x_{1}>0}\left(1+\left|x\right|^{2}\right)^{k}\left|\partial_{1}u_{\epsilon}\left(x\right)\right|^{2}=O\left(\epsilon^{m}\right),\epsilon\rightarrow0$$

Consequently, if $\beta \in \mathbb{Z}_+^n$, then

$$\sup_{x_{1}>0}\left|x^{\beta}\partial_{1}u_{\epsilon}\left(x\right)\right|^{2} \leq C_{1}\sup_{x_{1}>0}\left(1+\left|x\right|^{2}\right)^{\left|\beta\right|}\left|\partial_{1}u_{\epsilon}\left(x\right)\right|^{2} = O\left(\epsilon^{m}\right), \epsilon \to 0.$$

If $x_1 < 0$, one considers v_{ϵ} such that $v_{\epsilon}(x) = u_{\epsilon}(-x_1, x')$ as above, then we obtain

$$\sup_{x_1>0} |x^{\beta} \partial_1 v_{\epsilon}(x)|^2 = \sup_{x_1<0} |x^{\beta} \partial_1 u_{\epsilon}(x)|^2 = O(\epsilon^m), \epsilon \to 0.$$

Therefore, by induction, we have

$$\forall m \in \mathbb{Z}_{+}, \forall \alpha \in \mathbb{Z}_{+}^{n}, \forall \beta \in \mathbb{Z}_{+}^{n}, \sup_{x \in \Omega} \left| x^{\beta} \partial^{\alpha} u_{\epsilon} \left(x \right) \right| = O\left(\epsilon^{m} \right), \epsilon \to 0.$$

Thus $\mathcal{N}_{\mathcal{S}_{*}}(\Omega) \cap \mathcal{N}_{\mathcal{S}^{*}}(\Omega) \subset \mathcal{N}_{\mathcal{S}}(\Omega)$ and consequently $\mathcal{G}_{\mathcal{S}}^{\widetilde{\mathcal{R}}}(\Omega) = \mathcal{G}_{\mathcal{S}_{*}}^{\widetilde{\mathcal{R}}_{0}}(\Omega) \cap \mathcal{C}_{\mathcal{S}_{*}}^{\widetilde{\mathcal{R}}}(\Omega)$ $\mathcal{G}_{\mathcal{S}^*}^{\widetilde{\mathcal{R}}^0}(\Omega)$.

Propositions 3.2 and 4.2 give the following result characterizing the negligible elements of the algebra $\mathcal{G}_{\mathcal{S}}^{\tilde{\mathcal{R}}}(\Omega)$.

Corollary 6.3. Let Ω be a box. Then an element $(u_{\epsilon})_{\epsilon} \in \mathcal{E}_{\mathcal{S}}^{\widetilde{\mathcal{R}}}(\Omega)$ is in $\mathcal{N}_{\mathcal{S}}(\Omega)$ if and only if the following condition is satisfied,

(10)
$$\forall m \in \mathbb{Z}_+, \sup_{x \in \Omega} |u_{\epsilon}(x)| = O(\epsilon^m), \epsilon \to 0.$$

Theorem 6.2 gives the following corollaries characterizing the algebra of rapidly decreasing generalized functions $\mathcal{G}_{\mathcal{S}}$ and the algebra of regular rapidly decreasing generalized functions $\mathcal{G}^{\infty}_{\mathcal{S}}$.

Corollary 6.4. (i) When $\widetilde{\mathcal{R}} = \mathbb{R}^{\mathbb{Z}^2_+}_+$ we obtain $\mathcal{G}_{\mathcal{S}}^{\mathbb{R}^2_+} = \mathcal{G}_{\mathcal{S}}$ and we have $\mathcal{G}_{\mathcal{S}} = \mathcal{G}_{\mathcal{S}^*} \cap \mathcal{G}_{\mathcal{S}_*},$ (11)

where

$$\mathcal{G}_{\mathcal{S}^*} := \frac{\left\{ (u_{\epsilon})_{\epsilon} \in \mathcal{S}^{*I} : \forall \alpha \in \mathbb{Z}_+^n, \exists m \in \mathbb{Z}_+, \sup_{x \in \mathbb{R}^n} |\partial^{\alpha} u_{\epsilon} (x)| = O(\epsilon^{-m}), \epsilon \to 0 \right\}}{\left\{ (u_{\epsilon})_{\epsilon} \in \mathcal{S}^{*I} : \forall \alpha \in \mathbb{Z}_+^n, \forall m \in \mathbb{Z}_+, \sup_{x \in \mathbb{R}^n} |\partial^{\alpha} u_{\epsilon} (x)| = O(\epsilon^{m}), \epsilon \to 0 \right\}}$$

and

$$\mathcal{G}_{\mathcal{S}_{*}} := \frac{\left\{ \left(u_{\epsilon}\right)_{\epsilon} \in \mathcal{S}_{*}^{I} : \forall \beta \in \mathbb{Z}_{+}^{n}, \exists m \in \mathbb{Z}_{+}, \sup_{x \in \mathbb{R}^{n}} \left| x^{\beta} u_{\epsilon}\left(x\right) \right| = O\left(\epsilon^{-m}\right), \epsilon \to 0 \right\}}{\left\{ \left(u_{\epsilon}\right)_{\epsilon} \in \mathcal{S}_{*}^{I} : \forall \beta \in \mathbb{Z}_{+}^{n}, \forall m \in \mathbb{Z}_{+}, \sup_{x \in \mathbb{R}^{n}} \left| x^{\beta} u_{\epsilon}\left(x\right) \right| = O\left(\epsilon^{m}\right), \epsilon \to 0 \right\}}$$

(ii) When $\widetilde{\mathcal{R}} = \widetilde{\mathcal{B}}$ we obtain $\mathcal{G}_{\mathcal{S}}^{\widetilde{\mathcal{B}}} = \mathcal{G}_{\mathcal{S}}^{\infty}$ and we have

(12)
$$\mathcal{G}_{\mathcal{S}}^{\infty} = \mathcal{G}_{\mathcal{S}^*}^{\infty} \cap \mathcal{G}_{\mathcal{S}_*}^{\infty}$$

where

$$\mathcal{G}_{\mathcal{S}^{*}}^{\infty} := \frac{\left\{ \left(u_{\epsilon}\right)_{\epsilon} \in \mathcal{S}^{*I} : \exists m \in \mathbb{Z}_{+}, \forall \alpha \in \mathbb{Z}_{+}^{n}, \sup_{x \in \mathbb{R}^{n}} \left|\partial^{\alpha} u_{\epsilon}\left(x\right)\right| = O\left(\epsilon^{-m}\right), \epsilon \to 0 \right\}}{\left\{ \left(u_{\epsilon}\right)_{\epsilon} \in \mathcal{S}^{*I} : \forall m \in \mathbb{Z}_{+}, \forall \alpha \in \mathbb{Z}_{+}^{n}, \sup_{x \in \mathbb{R}^{n}} \left|\partial^{\alpha} u_{\epsilon}\left(x\right)\right| = O\left(\epsilon^{m}\right), \epsilon \to 0 \right\}}$$

and

$$\mathcal{G}_{\mathcal{S}_{*}}^{\infty} := \frac{\left\{ \left(u_{\epsilon}\right)_{\epsilon} \in \mathcal{S}_{*}^{I} : \exists m \in \mathbb{Z}_{+}, \forall \beta \in \mathbb{Z}_{+}^{n}, \sup_{x \in \mathbb{R}^{n}} \left| x^{\beta} u_{\epsilon}\left(x\right) \right| = O\left(\epsilon^{-m}\right), \epsilon \to 0 \right\}}{\left\{ \left(u_{\epsilon}\right)_{\epsilon} \in \mathcal{S}_{*}^{I} : \forall m \in \mathbb{Z}_{+}, \forall \beta \in \mathbb{Z}_{+}^{n}, \sup_{x \in \mathbb{R}^{n}} \left| x^{\beta} u_{\epsilon}\left(x\right) \right| = O\left(\epsilon^{m}\right), \epsilon \to 0 \right\}}$$

7. Characterization of $\widetilde{\mathcal{R}}$ -rapidly decreasing generalized functions via the Fourier transform

The Fourier transform of $u \in \mathcal{S}$, denoted by \hat{u} or $\mathcal{F}(u)$, is defined by

$$\widehat{u}\left(\xi\right) = \left(2\pi\right)^{-\frac{n}{2}} \int e^{-ix\xi} u\left(x\right) dx$$

Definition. The Fourier transform of $u = [(u_{\epsilon})_{\epsilon}] \in \mathcal{G}_{\mathcal{S}}^{\tilde{\mathcal{R}}}$, denoted by $\mathcal{F}_{\mathcal{S}}(u)$, is defined by

$$\mathcal{F}_{\mathcal{S}}\left(u\right) = \widehat{u} = \left[\left(\widehat{u_{\epsilon}}\right)_{\epsilon}\right] \text{ in } \mathcal{G}_{\mathcal{S}}^{\mathcal{R}}$$

Remark 7.1. The inverse Fourier transform of $u \in S$, denoted \tilde{u} or $\mathcal{F}_{S}^{-1}(u)$, is defined as usually.

The following proposition gives the main results of the Fourier transform $\mathcal{F}_{\mathcal{S}}$, its proof is standard.

Proposition 7.2. The map

$$\mathcal{F}_{\mathcal{S}}:\mathcal{G}_{\mathcal{S}}^{\widetilde{\mathcal{R}}}
ightarrow\mathcal{G}_{\mathcal{S}}^{\widetilde{\mathcal{R}}}$$

is an algebraic isomorphism.

Let

$$\widehat{\mathcal{S}^*} = \left\{ f \in \mathcal{C}^\infty : \forall \beta \in \mathbb{Z}^n_+, \sup_{\xi \in \mathbb{R}^n} \left| \xi^\beta \widehat{f}(\xi) \right| < \infty \right\},\$$

and let $\widetilde{\mathcal{R}}$ be a regular subset of $\mathbb{R}^{\mathbb{Z}^2_+}_+$, if we define

$$\mathcal{E}_{\widehat{\mathcal{S}^{*}}}^{\widehat{\mathcal{R}}^{0}} = \left\{ \left(u_{\epsilon} \right)_{\epsilon} \in \widehat{\mathcal{S}^{*}}^{I} : \exists N \in \widetilde{\mathcal{R}}^{0}, \forall \beta \in \mathbb{Z}_{+}^{n}, \sup_{\xi \in \mathbb{R}^{n}} \left| \xi^{\beta} \widehat{u_{\epsilon}} \left(\xi \right) \right| = O\left(\epsilon^{-N_{\left|\beta\right|}} \right), \epsilon \to 0 \right\},$$

$$\mathcal{N}_{\widehat{\mathcal{S}^*}}^{\widetilde{\mathcal{R}}^0} = \left\{ \left(u_\epsilon \right)_\epsilon \in \widehat{\mathcal{S}^*}^I : \forall N \in \widetilde{\mathcal{R}}^0, \forall \beta \in \mathbb{Z}_+^n, \sup_{\xi \in \mathbb{R}^n} \left| \xi^\beta \widehat{u_\epsilon} \left(\xi \right) \right| = O\left(\epsilon^{N_{|\beta|}} \right), \epsilon \to 0 \right\},$$

then the following proposition is easy to prove.

 $\begin{array}{l} \textbf{Proposition 7.3. (i)} \ The \ space \ \mathcal{E}_{\widehat{\mathcal{S}}^*}^{\widetilde{\mathcal{R}}^0} \ is \ a \ subalgebra \ of \ \widehat{\mathcal{S}^*}^I. \\ (ii) \ The \ space \ \mathcal{N}_{\widehat{\mathcal{S}}^*}^{\widetilde{\mathcal{R}}^0} \ is \ an \ ideal \ of \ \mathcal{E}_{\widehat{\mathcal{S}}^*}^{\widetilde{\mathcal{R}}^0}. \\ (iii) \ The \ ideal \ \mathcal{N}_{\widehat{\mathcal{S}}^*}^{\widetilde{\mathcal{R}}^0} = \mathcal{N}_{\widehat{\mathcal{S}}^*} \ , \ where \end{array}$

$$\mathcal{N}_{\widehat{\mathcal{S}^*}} := \left\{ \left(u_{\epsilon} \right)_{\epsilon} \in \widehat{\mathcal{S}^*}^I : \forall m \in \mathbb{Z}, \forall \beta \in \mathbb{Z}^n_+, \sup_{\xi \in \mathbb{R}^n} \left| \xi^{\beta} \widehat{u_{\epsilon}} \left(\xi \right) \right| = O\left(\epsilon^m \right), \epsilon \to 0 \right\}.$$

The following proposition characterizes $\mathcal{N}_{\widehat{\mathcal{S}^*}}$.

Proposition 7.4. Let $(u_{\epsilon})_{\epsilon} \in \mathcal{E}_{\widehat{S^*}}^{\widetilde{\mathcal{R}}^0}$. Then $(u_{\epsilon})_{\epsilon} \in \mathcal{N}_{\widehat{S^*}}^{\widetilde{\mathcal{R}}^0}$ if and only if the following condition is satisfied,

(13)
$$\forall m \in \mathbb{Z}_+, \sup_{\xi \in \mathbb{R}^n} |\widehat{u_{\epsilon}}(\xi)| = O(\epsilon^m), \ \epsilon \to 0.$$

Proof. The proof is similar to that of Proposition 4.2.

Definition. The algebra $\mathcal{G}_{\widehat{\mathcal{S}^*}}^{\widetilde{\mathcal{R}}^0}$ is defined as the quotient algebra

$$\mathcal{G}_{\widehat{\mathcal{S}}^*}^{\widetilde{\mathcal{R}}^0} = rac{\mathcal{E}_{\widehat{\mathcal{S}}^*}^{\widetilde{\mathcal{R}}^0}}{\mathcal{N}_{\widehat{\mathcal{S}}^*}} \; .$$

The next theorem is the second characterization of $\mathcal{G}_{\mathcal{S}}^{\mathcal{R}}$.

Theorem 7.5. We have

(14)
$$\mathcal{G}_{\mathcal{S}}^{\widetilde{\mathcal{R}}} = \mathcal{G}_{\mathcal{S}_*}^{\widetilde{\mathcal{R}}_0} \cap \mathcal{G}_{\widehat{\mathcal{S}}^*}^{\widetilde{\mathcal{R}}^0} .$$

Proof. Let $(u_{\epsilon})_{\epsilon} \in \mathcal{E}_{\widehat{S^*}}^{\widetilde{\mathcal{R}}^0}$. It follows that

$$\begin{split} \int \left| x^{\beta} \widehat{u_{\epsilon}} \left(x \right) \right| dx &\leq C \sup_{x \in \mathbb{R}^{n}} \left(1 + |x|^{2} \right)^{n} \left| x^{\beta} \widehat{u_{\epsilon}} \left(x \right) \right|, \\ &= O\left(\epsilon^{-N'_{|\beta|+2n}} \right), \ \epsilon \to 0, \\ &= O\left(\epsilon^{-N_{|\beta|}} \right), \ \epsilon \to 0, \end{split}$$

for some $N \in \widetilde{\mathcal{R}}^0$. The continuity of the Fourier transformation \mathcal{F} from the Lebesgue space of integrable functions \mathbb{L}^1 to the Lebesgue space of essentially bounded functions \mathbb{L}^{∞} gives

$$\left|\left|\partial^{\beta} u_{\epsilon}\right|\right|_{\mathbb{L}^{\infty}} = O\left(\epsilon^{-N_{|\beta|}}\right), \ \epsilon \to 0,$$

which shows that $(u_{\epsilon})_{\epsilon} \in \mathcal{E}_{\mathcal{S}^*}^{\widetilde{\mathcal{R}}^0}$ and therefore $\mathcal{E}_{\widetilde{\mathcal{S}^*}}^{\widetilde{\mathcal{R}}^0} \subset \mathcal{E}_{\mathcal{S}^*}^{\widetilde{\mathcal{R}}^0}$. Consequently $\mathcal{E}_{\mathcal{S}_*}^{\widetilde{\mathcal{R}}_0} \cap \mathcal{E}_{\widetilde{\mathcal{S}^*}}^{\widetilde{\mathcal{R}}^0} \subset \mathcal{E}_{\mathcal{S}}^{\widetilde{\mathcal{R}}}$. In order to show the inverse inclusion let us mention in first, that from [4], we have

$$(u_{\epsilon})_{\epsilon} \in \mathcal{S}^{I} \iff (u_{\epsilon})_{\epsilon} \in \mathcal{S}^{I}_{*} \cap \widehat{\mathcal{S}^{*}}^{I},$$

which implies in particular that $\mathcal{S} \subset \widehat{\mathcal{S}^*}$. On the other hand if $(u_{\epsilon})_{\epsilon} \in \mathcal{E}_{\mathcal{S}}^{\widetilde{\mathcal{R}}}$, then

$$\int \left|\partial^{\beta} u_{\epsilon}\left(x\right)\right| dx \leq C \sup_{x \in \mathbb{R}^{n}} \left(1 + |x|^{2}\right)^{n} \left|\partial^{\beta} u_{\epsilon}\left(x\right)\right|,$$
$$= O\left(\epsilon^{-N'_{|\beta|,2n}}\right), \ \epsilon \to 0,$$
$$= O\left(\epsilon^{-N_{|\beta|,0}}\right), \ \epsilon \to 0,$$

for some $N \in \widetilde{\mathcal{R}}$, i.e.,

$$\int \left|\partial^{\beta} u_{\epsilon}\left(x\right)\right| dx = O\left(\epsilon^{-N_{\left|\beta\right|}}\right), \ \epsilon \to 0,$$

for some $N \in \widetilde{\mathcal{R}}^0$. The continuity \mathcal{F} from \mathbb{L}^1 to \mathbb{L}^∞ gives

$$\left|\left|\xi^{\beta}\widehat{u_{\epsilon}}\right|\right|_{\mathbb{L}^{\infty}} = O\left(\epsilon^{-N_{|\beta|}}\right), \ \epsilon \to 0$$

which shows that $(u_{\epsilon})_{\epsilon} \in \mathcal{E}_{\widehat{S^*}}^{\widetilde{\mathcal{R}}^0}$ and consequently $(u_{\epsilon})_{\epsilon} \in \mathcal{E}_{\mathcal{S}_*}^{\widetilde{\mathcal{R}}_0} \cap \mathcal{E}_{\widehat{S^*}}^{\widetilde{\mathcal{R}}^0}$. Thus $\mathcal{E}_{\mathcal{S}}^{\widetilde{\mathcal{R}}} \subset \mathcal{E}_{\mathcal{S}_*}^{\widetilde{\mathcal{R}}_0} \cap \mathcal{E}_{\widehat{S^*}}^{\widetilde{\mathcal{R}}_0} \cap \mathcal{E}_{\widehat{S^*}}^{\widetilde{\mathcal{R}}_0} \cap \mathcal{E}_{\widehat{S^*}}^{\widetilde{\mathcal{R}}^0}$. A similar proof shows that $\mathcal{N}_{\mathcal{S}} = \mathcal{N}_{\mathcal{S}_*} \cap \mathcal{N}_{\widehat{S^*}}$. Therefore $\mathcal{G}_{\mathcal{S}}^{\widetilde{\mathcal{R}}} = \mathcal{G}_{\mathcal{S}_*}^{\widetilde{\mathcal{R}}_0} \cap \mathcal{G}_{\widehat{S^*}}^{\widetilde{\mathcal{R}}^0}$.

The following corollary gives a second characterization of the space $\mathcal{N}_{\mathcal{S}}$.

Corollary 7.6. An element $(u_{\epsilon})_{\epsilon} \in \mathcal{E}_{S}^{\widetilde{\mathcal{R}}}$ is in \mathcal{N}_{S} if and only if the following condition is satisfied,

(15)
$$\forall m \in \mathbb{Z}_{+}, \sup_{\xi \in \mathbb{R}^{n}} |\widehat{u_{\epsilon}}(\xi)| = O(\epsilon^{m}), \epsilon \to 0.$$

Proof. If $(u_{\epsilon})_{\epsilon} \in \mathcal{E}_{\mathcal{S}}^{\widetilde{\mathcal{R}}}$, then $(u_{\epsilon})_{\epsilon} \in \mathcal{E}_{\mathcal{S}_*}^{\widetilde{\mathcal{R}}_0} \cap \mathcal{E}_{\widehat{\mathcal{S}}_*}^{\widetilde{\mathcal{R}}^0}$ by Theorem 7.5. From $(u_{\epsilon})_{\epsilon} \in \mathcal{E}_{\widehat{\mathcal{S}}_*}^{\widetilde{\mathcal{R}}^0}$ and (15), we have by Proposition 7.4 that $(u_{\epsilon})_{\epsilon} \in \mathcal{N}_{\widehat{\mathcal{S}}_*}$. In order to show that $(u_{\epsilon})_{\epsilon} \in \mathcal{N}_{\mathcal{S}_*}$, we have

$$\begin{split} \int \left| \widehat{u_{\epsilon}} \left(x \right) \right| dx &\leq C \sup_{x \in \mathbb{R}^n} \left(1 + \left| x \right|^2 \right)^n \left| \widehat{u_{\epsilon}} \left(x \right) \right|, \\ &= O\left(\epsilon^m \right), \epsilon \to 0, \end{split}$$

for all $m \in \mathbb{Z}_+$. The continuity of \mathcal{F} from \mathbb{L}^1 to \mathbb{L}^∞ gives

$$\left|\left|u_{\epsilon}\right|\right|_{\mathbb{L}^{\infty}} = O\left(\epsilon^{m}\right), \epsilon \to 0,$$

this implies, by Proposition 4.2, that $(u_{\epsilon})_{\epsilon} \in \mathcal{N}_{\mathcal{S}_*}$. Consequently $(u_{\epsilon})_{\epsilon} \in \mathcal{N}_{\mathcal{S}_*} \cap \mathcal{N}_{\widehat{\mathcal{S}^*}} = \mathcal{N}_{\mathcal{S}}$

We have also an other characterization of the algebra $\mathcal{G}_{\mathcal{S}}$.

Corollary 7.7. We have

(16)
$$\mathcal{G}_{\mathcal{S}} = \mathcal{G}_{\mathcal{S}_*} \cap \mathcal{G}_{\widehat{\mathcal{S}^*}},$$

where

$$\mathcal{G}_{\widehat{\mathcal{S}^{*}}} := \frac{\left\{ \left(u_{\epsilon}\right)_{\epsilon} \in \widehat{\mathcal{S}^{*}}^{I} : \forall \beta \in \mathbb{Z}_{+}^{n}, \exists m \in \mathbb{Z}_{+}, \sup_{\xi \in \mathbb{R}^{n}} \left| \xi^{\beta} \widehat{u_{\epsilon}}\left(\xi\right) \right| = O\left(\epsilon^{-m}\right), \epsilon \to 0 \right\}}{\left\{ \left(u_{\epsilon}\right)_{\epsilon} \in \widehat{\mathcal{S}^{*}}^{I} : \forall \beta \in \mathbb{Z}_{+}^{n}, \forall m \in \mathbb{Z}_{+}, \sup_{\xi \in \mathbb{R}^{n}} \left| \xi^{\beta} \widehat{u_{\epsilon}}\left(\xi\right) \right| = O\left(\epsilon^{m}\right), \epsilon \to 0 \right\}}$$

The following result is obtained as a corollary of Theorem 7.5.

Corollary 7.8. We have

(17)
$$\mathcal{G}^{\infty}_{\mathcal{S}} = \mathcal{G}^{\infty}_{\mathcal{S}_*} \cap \mathcal{G}^{\infty}_{\widehat{\mathcal{S}}^*},$$

where

$$\mathcal{G}_{\widehat{\mathcal{S}^*}}^{\infty} := \frac{\left\{ \left(u_{\epsilon} \right)_{\epsilon} \in \widehat{\mathcal{S}^*}^I : \exists m \in \mathbb{Z}_+, \forall \beta \in \mathbb{Z}_+^n, \sup_{\xi \in \mathbb{R}^n} \left| \xi^{\beta} \widehat{u_{\epsilon}} \left(\xi \right) \right| = O\left(\epsilon^{-m} \right), \epsilon \to 0 \right\}}{\left\{ \left(u_{\epsilon} \right)_{\epsilon} \in \widehat{\mathcal{S}^*}^I : \forall m \in \mathbb{Z}_+, \forall \beta \in \mathbb{Z}_+^n, \sup_{\xi \in \mathbb{R}^n} \left| \xi^{\beta} \widehat{u_{\epsilon}} \left(\xi \right) \right| = O\left(\epsilon^{m} \right), \epsilon \to 0 \right\}}$$

References

- J. Alvarez and H. Obiedat, Characterizations of the Schwartz space S and the Beurling-Bjorck space S_w, Cubo 6 (2004), no. 4, 167–183.
- [2] K. Benmeriem and C. Bouzar, Ultraregular generalized functions of Colombeau type, J. Math. Sci. Univ. Tokyo 15 (2008), no. 4, 427–447.
- [3] H. A. Biagioni and M. Oberguggenberger, Generalized solutions to the Korteweg-de Vries and the regularized long-wave equations, SIAM J. Math. Anal. 23 (1992), no. 4, 923–940.
- [4] J. Chung, S. Y. Chung, and D. Kim, Une caractérisation de l'espace S de Schwartz, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 1, 23–25.
- [5] J. F. Colombeau, New Generalized Functions and Multiplication of Distributions, North-Holland Publishing Co., Amsterdam, 1984.
- [6] A. Delcroix, Regular rapidly decreasing nonlinear generalized functions. Application to microlocal regularity, J. Math. Anal. Appl. 327 (2007), no. 1, 564–584.
- [7] C. Garetto, Pseudo-differential operators in algebras of generalized functions and global hypoellipticity, Acta Appl. Math. 80 (2004), no. 2, 123–174.
- [8] I. M. Gel'fand and G. E. Shilov, Generalized Functions, Vol. 2, Academic Press, 1967.
- K. Gröchenig and G. Zimmermann, Spaces of test functions via the STFT, J. Funct. Spaces Appl. 2 (2004), no. 1, 25–53.
- [10] M. Grosser, M. Kunzinger, M. Oberguggenberger, and R. Steinbauer, Geometric Theory of Generalized Functions with Applications to General Relativity, Kluwer Academic Publishers, Dordrecht, 2001.
- [11] L. Hörmander, Distributions Theory And Fourier Analysis, Springer, 1983.
- [12] A. I. Kashpirovski, Equality of the spaces S^{α}_{β} and $S^{\alpha} \cap S_{\beta}$, Funct. Anal. Appl. 14 (1980), p. 129.
- [13] M. Oberguggenberger, Regularity theory in Colombeau algebras, Bull. Cl. Sci. Math. Nat. Sci. Math. No. 31 (2006), 147–162.

CHIKH BOUZAR AND TAYEB SAIDI

- [14] N. Ortner and P. Wagner, Applications of weighted D'_{Lp}-spaces to the convolution of distributions, Bull. Polish Acad. Sci. Math. **37** (1989), no. 7-12, 579–595.
- [15] Ya. V. Radyno, N. F. Tkhan, and S. Ramdan, The Fourier transformation in an algebra of new generalized functions, Dokl. Akad. Nauk **327** (1992), no. 1, 20–24; translation in Russian Acad. Sci. Dokl. Math. **46** (1993), no. 3, 414–417.
- [16] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966.
- [17] L. Volevich and S. Gindikin, The Cauchy problem and related problems for convolution equations, Uspehi Mat. Nauk 27 (1972), no. 4(166), 65–143.

CHIKH BOUZAR ORAN-ESSENIA UNIVERSITY ORAN 31000, ALGERIA *E-mail address*: bouzar@yahoo.com; bouzar@univ-oran.dz

TAYEB SAIDI UNIVERSITY OF BECHAR BECHAR 08000, ALGERIA *E-mail address*: saidi_tb@yahoo.fr