Commun. Korean Math. Soc. **25** (2010), No. 3, pp. 365–372 DOI 10.4134/CKMS.2010.25.3.365

ON MEDIAL Q-ALGEBRAS

SUN SHIN AHN AND KEUM SOOK SO

ABSTRACT. In this paper, we show that the mapping $\varphi(x) = 0 * x$ is an endomorphism of a Q-algebra X, which induces a congruence relation " \sim " such that X/φ is a medial Q-algebra. We also study some decompositions of ideals in Q-algebras and obtain equivalent conditions for closed ideals. Moreover, we show that if I is an ideal of a Q-algebra X, then I^g is an ignorable ideal of X.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCKalgebras and BCI-algebras ([4, 5]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [2, 3], Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCHalgebras. J. Neggers and H. S. Kim ([8]) introduced the notion of d-algebras, i.e., (I) x * x = 0; (VII) 0 * x = 0; (VI) x * y = 0 and y * x = 0 imply x = y, which is another useful generalization of BCK-algebras, and investigated several relations between d-algebras and BCK-algebras, and then they investigated other relations between *d*-algebras and oriented digraphs. On the while, Y. B. Jun, E. H. Roh, and H. S. Kim ([6]) introduced a new notion, called a BH-algebra, i.e., (I) x * x = 0; (II) x * 0 = x; (VI) x * y = 0 and y * x = 0 imply x = y, which is a generalization of BCH/BCI/BCK-algebras, and showed that there is a maximal ideal in bounded BH-algebras. J. Neggers, S. S. Ahn, and H. S. Kim ([7]) introduced a new notion, called a *Q*-algebra, which is also a generalization of BCH/BCI/BCK-algebras, and generalized several theorems discussed in BCI-algebras. Moreover, they introduced the notion of "quadratic" Q-algebra, and obtained the result that every quadratic Q-algebra $(X; *, e), e \in X$, is of the form x * y = x - y + e, where $x, y \in X$ and X is a field with |X| > 3, i.e., the product is linear in a special way.

O2010 The Korean Mathematical Society

Received October 16, 2009.

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25.

Key words and phrases. Q-algebra, medial Q-algebra.

This research was supported by Hallym University Research Fund, 2009 (HRF-2009-025).

In this paper, we show that the mapping $\varphi(x) = 0 * x$ is an endomorphism of a *Q*-algebra *X*, which induces a congruence relation "~" such that X/φ is a medial *Q*-algebra. We also study some decompositions of ideals in *Q*-algebras and obtain equivalent conditions for closed ideals. Moreover, we show that if *I* is an ideal of a *Q*-algebra *X*, then I^g is an ignorable ideal of *X*.

2. Preliminaries

A *Q*-algebra ([7]) is a non-empty set X with a constant 0 and a binary operation "*" satisfying axioms:

- (I) x * x = 0,
- (II) x * 0 = x,
- (III) (x * y) * z = (x * z) * y
- for all $x, y, z \in X$.

For brevity we also call X a *Q*-algebra. In X we can define a binary relation " \leq " by $x \leq y$ if and only if x * y = 0.

Example 2.1 ([1]). Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	0	0	0
$\frac{1}{2}$	1	0	0	0
2	2	0	0	0
3	3	3	3	0

Then (X; *, 0) is a Q-algebra, which is not a BCH/BCI/BCK-algebra, since (VI) does not hold.

In a Q-algebra X the following property holds:

(IV) (x * (x * y)) * y = 0 for any $x, y \in X$.

A BCK-algebra is a Q-algebra X satisfying the additional axioms:

- (V) ((x * y) * (x * z)) * (z * y) = 0,
- (VI) x * y = 0 and y * x = 0 imply x = y,
- (VII) 0 * x = 0

for all $x, y, z \in X$.

Definition 2.2 ([7]). Let (X; *, 0) be a *Q*-algebra and $\emptyset \neq I \subseteq X$. *I* is called a *subalgebra* of *X* if

(S) $x * y \in I$ whenever $x \in I$ and $y \in I$. I is called an *ideal* of X if it satisfies:

 $(Q_0) \ 0 \in I,$

 $(Q_1) x * y \in I \text{ and } y \in I \text{ imply } x \in I.$

A Q-algebra X is called a QS-algebra ([1]) if it satisfies the following identity:

$$(x*y)*(x*z) = z*y$$

for any $x, y, z \in X$.

Example 2.3 ([1]). Let \mathbb{Z} be the set of all integers and let $n\mathbb{Z} := \{nz | z \in \mathbb{Z}\}$, where $n \in \mathbb{Z}$. Then $(\mathbb{Z}; -, 0)$ and $(n\mathbb{Z}; -, 0)$ are both *Q*-algebras and *QS*-algebras, where "-" is the usual subtraction of integers. Also, $(\mathbb{R}; -, 0)$ and $(\mathbb{C}; -, 0)$ are both *Q*-algebras and *QS*-algebras, where \mathbb{R} is the set of all real numbers and \mathbb{C} is the set of all complex numbers.

Example 2.4 ([1]). Let $X = \{0, 1, 2\}$ with the table as follows:

*	0	1	2
0	0	0	0
1	1	0	0
2	2	0	0

Then X is both a Q-algebra and a QS-algebra, but not a BCH/BCI/BCK-algebra, since (VI) does not hold.

3. Quotient *Q*-algebras

In the following, let X denote a Q-algebra unless otherwise specified. The following lemma is useful to investigate roles of endomorphism φ of X.

Lemma 3.1. Every Q-algebra X satisfies the following property:

$$0 * (x * y) = (0 * x) * (0 * y)$$

for any $x, y \in X$.

Proof. For any $x, y \in X$, we have

$$\begin{aligned} 0*(x*y) &= ((0*y)*(0*y))*(x*y) \\ &= ((0*y)*(x*y))*(0*y) \\ &= (((x*y)*x)*(x*y))*(0*y) \\ &= (((x*y)*(x*y))*x)*(0*y) \\ &= (((x*y)*(x*y))*x)*(0*y) \\ &= (0*x)*(0*y), \end{aligned}$$

completing the proof.

By Lemma 3.1, the mapping $\varphi : X \to X$ defined by $\varphi(x) := 0 * x$ for any $x \in X$, is an endomorphism of Q-algebras. Note that $\varphi(0) = 0$. The kernel of this endomorphism, i.e., the set $\operatorname{Ker} \varphi = \{x \in X \mid 0 * x = 0\}$ is a subalgebra of X. If X is a Q-algebra with the additional identity 0 * x = 0 for any $x \in X$, then $\operatorname{Ker} \varphi$ is an ideal of X.

Note that the centralizer of 0 in a Q-algebra X, i.e., the set

 $Z_0 = \{x \in X \mid 0 * x = x * 0\} = \{x \in X \mid 0 * x = x\} = \{x \in X \mid \varphi(x) = x\}$

is a subalgebra of X which is also a group. Indeed, if $Z_0 \neq \{0\}$, then for any $x, y, z \in Z_0$ we have x * y = (0 * x) * y = (0 * y) * x = y * x and as a consequence

(x * y) * z = (y * x) * z = (y * z) * x = x * (y * z). Thus a Q-algebra is a group if and only if it satisfies the identity 0 * x = x for any $x \in X$, or equivalently, if and only if it is associative.

Let " \sim " be a binary operation on X defined as follows:

 $x \sim y$ if and only if 0 * x = 0 * y,

in other words, $x \sim y$ if and only if $\varphi(x) = \varphi(y)$. Now we prove that "~" is an equivalence relation on X. Since $\varphi(x) = \varphi(x)$, we have $x \sim x$. This means that "~" is reflexive. If $x \sim y$ and $y \sim z$, then $\varphi(x) = \varphi(y)$ and $\varphi(y) = \varphi(z)$ and hence $\varphi(x) = \varphi(z)$. Therefore $x \sim z$, i.e., "~" is transitive. Thus "~" is an equivalence relation on X. Furthermore we have the following lemma:

Lemma 3.2. If $x \sim y$ and $u \sim v$, then $x * u \sim y * v$, *i.e.*, "~" is a congruence relation in a *Q*-algebra *X*.

Proof. Since $x \sim y$ and $u \sim v$, we have $\varphi(x) = \varphi(y)$ and $\varphi(u) = \varphi(v)$ and so by Lemma 3.1, $\varphi(x * u) = 0 * (x * u) = (0 * x) * (0 * u) = \varphi(x) * \varphi(u) = \varphi(y) * \varphi(v) = \varphi(y * v)$. Hence $\varphi(x * u) = \varphi(y * v)$, i.e., $x * u \sim y * v$.

We denote $[x]_{\varphi} := \{y \in X \mid x \sim y\} = \{y \in X \mid \varphi(x) = \varphi(y)\}$ by the equivalence class of x induced by the homomorphism $\varphi : X \to Y$. We claim that $[0]_{\varphi} = \operatorname{Ker}\varphi$. Indeed, if $y \in [0]_{\varphi} = \{y \in X \mid 0 \sim y\}$, then $\varphi(0) = \varphi(y)$. Since $\varphi(0) = 0$, $\varphi(y) = 0$ and so $y \in \operatorname{Ker}\varphi$. Conversely, if $y \in \operatorname{Ker}\varphi$, then $\varphi(y) = 0$. Since $\varphi(0) = 0$, $\varphi(0) = \varphi(y)$ and so $0 \sim y$. Hence $y \in [0]_{\varphi}$.

Denote $X/\varphi := \{ [x]_{\varphi} \mid x \in X \}$ and define the following operation:

$$[x]_{\varphi} \circledast [y]_{\varphi} := [x \ast y]_{\varphi}.$$

Since "~" is a congruence relation on X, the operation " \circledast " is well-defined. In what follows, we prove that $(X/\varphi; \circledast, [0]_{\varphi})$ is a Q-algebra. Let $[x]_{\varphi}, [y]_{\varphi}, [z]_{\varphi}$ and $[0]_{\varphi} \in X/\varphi$. Then we have the following properties:

- (1) $[x]_{\varphi} \circledast [x]_{\varphi} = [0]_{\varphi},$
- $\begin{array}{l} (2) \ [x]_{\varphi}^{\circ} \circledast [0]_{\varphi}^{\circ} = [x \ast 0]_{\varphi} = [x]_{\varphi}, \\ (3) \ ([x]_{\varphi} \circledast [y]_{\varphi}) \circledast [z]_{\varphi} = [x \ast y]_{\varphi} \ast [z]_{\varphi} = [(x \ast y) \ast z]_{\varphi} = [(x \ast z) \ast y]_{\varphi} = \\ [x \ast z]_{\varphi} \circledast [y]_{\varphi} = ([x]_{\varphi} \circledast [z]_{\varphi}) \circledast [y]_{\varphi}. \end{array}$

Summarizing the above facts we have:

Theorem 3.3. Let $\varphi : X \to Y$ be a homomorphism of Q-algebras. Then X/φ is a Q-algebra with $[0]_{\varphi} = \text{Ker}\varphi$.

The Q-algebra X/φ discussed in Theorem 3.3 is called a *quotient Q-algebra* induced by φ .

Theorem 3.4. If $\varphi : X \to Y$ is a homomorphism of Q-algebras, then $X/\varphi \cong \text{Im}\varphi$.

Proof. Define $\xi : X/\varphi \to \operatorname{Im}\varphi$ by $\xi([x]_{\varphi}) := \varphi(x)$. Then it is well-defined and one-one, since $[x]_{\varphi} = [y]_{\varphi} \Leftrightarrow x \in [y]_{\varphi} \Leftrightarrow \varphi(x) = \varphi(y) \Leftrightarrow \xi([x]_{\varphi}) = \xi([y]_{\varphi})$ for

any $[x]_{\varphi}, [y]_{\varphi} \in X/\varphi$. For any $[x]_{\varphi}, [y]_{\varphi} \in X/\varphi$, we have $\xi([x]_{\varphi} * [y]_{\varphi}) = \xi([x * y]_{\varphi}) = \varphi(x * y) = \varphi(x) * \varphi(y) = \xi([x]_{\varphi}) * \xi([y]_{\varphi})$, proving that $X/\varphi \cong \operatorname{Im}\varphi$. \Box

Definition 3.5. A Q-algebra X is said to be *medial* if it satisfies the following property:

$$(x * y) * (z * u) = (x * z) * (y * u)$$
 for any $x, y, z, u \in X$.

Example 3.6. Let $X := \mathbb{R} - \{-n\}, 0 \neq n \in \mathbb{Z}^+$ where \mathbb{R} is the set of all real numbers and \mathbb{Z}^+ is the set of all positive integers. If we define $x * y := \frac{n(x-y)}{n+y}$, then (X; *, 0) is a medial *Q*-algebra.

Lemma 3.7. A Q-algebra X is medial if and only if it satisfies one of the following conditions: for any $x, y, z \in X$,

- (i) y * x = 0 * (x * y), (ii) x * (y * z) = z * (y * x), (iii) x * (x * y) = y,
- (iv) 0 * (0 * y) = y.

Proof. If a *Q*-algebra *X* is medial, then y * x = (y * x) * 0 = (y * x) * (y * y) = (y * y) * (x * y) = 0 * (x * y). Let us assume (i) holds in *X*. Then x * (y * z) = 0 * ((y * z) * x) = 0 * ((y * x) * z) = z * (y * x), which proves (ii). The condition (ii) implies mediality. Indeed, we have (x * y) * (z * u) = u * (z * (x * y)) = u * (y * (x * z)) = (x * z) * (y * u), i.e., (x * y) * (z * u) = (x * z) * (y * u). Assume (i) holds. Then x * (x * y) = 0 * ((x * y) * x) = 0 * ((x * x) * y) = 0 * (0 * y) = y * 0 = y. Hence x * (x * y) = y, proving (iii). If we put x := 0 in (iii),

0*(0*y) = y*0 = y. Hence x*(x*y) = y, proving (iii). If we put x := 0 in (iii), then 0*(0*y) = y, which proves (iv). Suppose (iv) holds. Then by Lemma 3.1 x*y = 0*(0*(x*y)) = 0*((0*x)*(0*y)) = 0*((0*(0*y))*x) = 0*(y*x). Hence x*y = 0*(y*x), which completes the proof. \Box

Corollary 3.8. A Q-algebra is medial if and only if it is a medial QS-algebra.

Proof. It is enough to prove the axiom (x * y) * (x * z) = z * y is satisfied. In fact, by Lemma 3.7, we have

$$(x * y) * (x * z) = (x * x) * (y * z) = 0 * (y * z) = z * y,$$

proving the proof.

Lemma 3.9. A Q-algebra X is associative if and only if 0 * x = x for any $x \in X$.

Proof. If X is associative, then (x * x) * x = x * (x * x) which gives 0 * x = x for any $x \in X$.

Conversely, assume 0*x = x for any $x \in X$. Then x*(y*z) = (0*x)*(y*z) = (0*(y*z))*x = (y*z)*x = (y*x)*z = ((0*y)*x)*z = ((0*x)*y)*z = (x*y)*z. Thus X is associative.

Corollary 3.10. Every associative Q-algebra is medial.

Proof. By Lemma 3.9, 0 * x = x for any $x \in X$. For any $x, y \in X$, we have x * y = (0 * x) * y = (0 * y) * x = 0 * (y * x). It follows from Lemma 3.7 that X is a medial Q-algebra.

Proposition 3.11. Every QS-algebra satisfies the identity:

$$0 * (0 * (0 * x)) = 0 * x$$
 for any $x \in X$.

Proof. 0 * (0 * (0 * x)) = (0 * 0) * (0 * (0 * x)) = (0 * x) * 0 = 0 * x.

4. Some decompositions of ideals in Q-algebras

For any Q-algebra X and $x, y \in X$, denote

$$A(x, y) := \{ z \in X \mid (z * x) * y = 0 \}.$$

Theorem 4.1. If I is an ideal of a Q-algebra X, then

$$I = \bigcup_{x,y \in I} A(x,y).$$

Proof. Let I be an ideal of a Q-algebra X. If $z \in I$, then since (z * 0) * z = (z * z) * 0 = 0 * 0 = 0, we have $z \in A(0, z)$. Hence

$$I \subseteq \bigcup_{z \in I} A(0, z) \subseteq \bigcup_{x, y \in I} A(x, y).$$

Let $z \in \bigcup_{x,y \in I} A(x,y)$. Then there exist $a, b \in I$ such that $z \in A(a,b)$, so that (z*a)*b = 0. Since I is an ideal, it follows that $z \in I$. Thus $\bigcup_{x,y \in I} A(x,y) \subseteq I$, and consequently $I = \bigcup_{x,y \in I} A(x,y)$.

Corollary 4.2. If I is an ideal of a Q-algebra X, then

 $I = \bigcup_{x \in I} A(0, x) = \bigcup_{x \in I} A(x, 0).$

Proof. By Theorem 4.1, we have $\bigcup_{x \in I} A(0, x) \subseteq \bigcup_{x,y \in X} A(x, y) = I$. If $x \in I$, then $x \in A(0, x)$ because (x * 0) * x = 0. Hence $I \subseteq \bigcup_{x \in I} A(0, x)$. Since (x * y) * z = (x * z) * y, we have $\bigcup_{x \in I} A(0, x) = \bigcup_{x \in I} A(x, 0)$. This completes the proof. \Box

Theorem 4.3. Let I be a subset of a Q-algebra X such that $0 \in I$ and $I = \bigcup_{x,y \in I} A(x,y)$. Then I is an ideal of X.

Proof. Let $x*y, y \in I = \bigcup_{x,y \in I} A(x,y)$. Since (x*(x*y))*y = (x*y)*(x*y) = 0, we have $x \in A(x*y,y) \subseteq I$. Hence I is an ideal of X. \Box

Combining Theorems 4.1 and 4.3, we have the following corollary.

Corollary 4.4. Let X be a Q-algebra and let I be a subset of X containing 0. Then I is an ideal of X if and only if $I = \bigcup_{x,y \in I} A(x,y)$.

Definition 4.5. Let (X; *, 0) be a *Q*-algebra and let $\emptyset \neq I \subset X$. An ideal *I* is said to be *closed* of *X* if $0 * x \in I$ for all $x \in I$.

Clearly, a closed ideal of a Q-algebra X is a subalgebra of X. Now we give a characterization of closed ideals.

Theorem 4.6. Let I be a subset of a Q-algebra X. Then I is a closed ideal of X if and only if it satisfies

(i)
$$0 \in I$$
,
(ii) $x * z \in I, y * z \in I$ and $z \in I$ imply $x * y \in I$

Proof. Let I be a closed ideal of X. Clearly $0 \in I$. Assume that $x * z, y * z, z \in I$. Since I is an ideal, we have $x, y \in I$, which implies that $x * y \in I$ because I is a closed ideal and hence a subalgebra of X.

Conversely assume that I satisfies (i) and (ii). Let $x * y, y \in I$. Since $0 * 0, y * 0, 0 \in I$, by (ii) we have $0 * y \in I$. From (ii) again it follows that $x = x * 0 \in I$, so that I is an ideal of X. Now suppose that $x \in I$. Since $0 * 0, x * 0, 0 \in I$, we obtain $0 * x \in I$ by (ii). This completes the proof. \Box

Theorem 4.7. Let I be an ideal of a Q-algebra X. The set

$$I^0 := \{ x \in I \mid 0 * x \in I \}$$

is the greatest closed ideal of X which is contained in I.

Proof. First we show that I^0 is an ideal of X. Clearly, $0 \in I^0$. For any $x, y \in X$, if $x * y, y \in I^0$, then $0 * y \in I$. By Lemma 3.1, we have

$$(0 * x) * (0 * y) = 0 * (x * y) \in I.$$

Since *I* is an ideal of *X*, it follows that $0 * x \in I$. Hence $x \in I^0$, which proves that I^0 is an ideal of *X*. If $x \in I^0$, since $I^0 \subseteq I$, we have $x \in I$ and $0 * x \in I$. Since (0 * (0 * x)) * x = 0, it follows from *I* is an ideal of *X* that $0 * (0 * x) \in I$, which implies $0 * x \in I^0$. This proves that I^0 is closed. Now, assume that *A* is a closed ideal of *X* which is contained in *I*. Let $x \in A$. Then $0 * x \in A$. Since *A* is contained in *I*, we have $x, 0 * x \in I$, and so $x \in I^0$. Thus $A \subseteq I^0$. Therefore I^0 is the greatest closed ideal of *X* which is contained in *I*.

Definition 4.8. An ideal I of a Q-algebra X is said to be *ignorable* if $I^0 = \{0\}$.

Example 4.9. Let X be the set of all real numbers and let C(X) be the set of all real-valued continuous functions on X. The operation "*" is defined as follows:

$$(f * g)(x) := f(x) - g(x)$$
 for all $x \in X$.

The nullary operation 0 is the constant function 0. Then it is easy to show that (C(X); *, 0) is a Q-algebra. If we define $P(X) := \{f \in C(X) \mid f(x) \ge 0, \forall x \in X\}$, then P(X) is an ideal of C(X), but it is not a subalgebra of C(X), since if we let f(x) := 3 and g(x) := 5, where f and g are in P(X), then (f * g)(x) = f(x) - g(x) = 3 - 5 = -2 < 0 and so $f * g \notin P(X)$. Moreover, $P(X)^0 = \{0\}$.

Theorem 4.10. Let I be an ideal of a medial Q-algebra X. Then $I^g := (I - I^0) \cup \{0\}$ is an ignorable ideal of X.

Proof. Let $x, y \in X$ be such that $x * y \in I^g$ and $y \in I^g$. If y = 0, then $x = x * 0 = x * y \in I^g$. Assume that $y \neq 0$. Clearly, $x * y, y \in I$, which implies that $x \in I$. Assume that $x \in I^0 - \{0\}$. Then $x \neq 0$ and $0 * x \in I$. Since $y \neq 0$, it follows from $y \in I^g$ that $y \in I - I^0$, so that $0 * y \notin I$. Since X is a medial Q-algebra, we have (0 * y) * (0 * y) = (0 * (0 * x)) * y = x * y by Lemma 3.7. Since $x * y \in I$, we obtain $(0 * y) * (0 * x) \in I$. Since $0 * x \in I$, we have $0 * y \in I$. This is a contradiction. Hence $x \notin I^0 - \{0\}$, i.e., $x \in I^g$. This proves that I^g is an ideal of X. Now we show that $(I^g)^0 = \{0\}$. If $x \in (I^g)^0$, then $x \in I^g$ and $0 * x \in I^g$. From $x \in I^g$ it follows that x = 0 or $x \in I - I^0$. If $x \in I - I^0$, then $0 * x \notin I$, which is a contradiction. Thus x = 0. This completes the proof. □

The following corollary is obvious.

Corollary 4.11. Let I be an ideal of a Q-algebra X. Then

$$I^0 \cup I^g = I \text{ and } I^0 \cap I^g = \{0\}.$$

References

- [1] S. S. Ahn and H. S. Kim, On QS-algebras, J. Chungcheong Math. Soc. 12 (1999), 33-41.
- [2] Q. P. Hu and X. Li, On BCH-algebras, Math. Sem. Notes Kobe Univ. 11 (1983), no. 2, part 2, 313–320.
- [3] _____, On proper BCH-algebras, Math. Japon. **30** (1985), no. 4, 659–661.
- [4] K. Iséki, On BCI-algebras, Math. Sem. Notes Kobe Univ. 8 (1980), no. 1, 125-130.
- [5] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978/79), no. 1, 1–26.
- [6] Y. B. Jun, E. H. Roh, and H. S. Kim, On BH-algebras, Sci. Math. 1 (1998), no. 3, 347–354
- [7] J. Neggers, S. S. Ahn, and H. S. Kim, On Q-algebras, Int. J. Math. Math. Sci. 27 (2001), no. 12, 749–757.
- [8] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), no. 1, 19-26.

SUN SHIN AHN DEPARTMENT OF MATHEMATICS EDUCATION DONGGUK UNIVERSITY SEOUL 100-715, KOREA *E-mail address:* sunshine@dongguk.edu

KEUM SOOK SO DEPARTMENT OF MATHEMATICS HALLYM UNIVERSITY CHUNCHEON 200-702, KOREA *E-mail address*: ksso@hallym.ac.kr