ON MEDIAL Q-ALGEBRAS

Sun Shin Ahn and Keum Sook So

Abstract

In this paper, we show that the mapping $\varphi(x)=0 * x$ is an endomorphism of a Q-algebra X, which induces a congruence relation " \sim " such that X / φ is a medial Q-algebra. We also study some decompositions of ideals in Q-algebras and obtain equivalent conditions for closed ideals. Moreover, we show that if I is an ideal of a Q-algebra X, then I^{g} is an ignorable ideal of X.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK algebras and $B C I$-algebras $([4,5])$. It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. In [2, 3], Q. P. Hu and X. Li introduced a wide class of abstract algebras: $B C H$-algebras. They have shown that the class of $B C I$-algebras is a proper subclass of the class of BCH algebras. J. Neggers and H. S. Kim ([8]) introduced the notion of d-algebras, i.e., (I) $x * x=0$; (VII) $0 * x=0$; (VI) $x * y=0$ and $y * x=0$ imply $x=y$, which is another useful generalization of $B C K$-algebras, and investigated several relations between d-algebras and $B C K$-algebras, and then they investigated other relations between d-algebras and oriented digraphs. On the while, Y. B. Jun, E. H. Roh, and H. S. Kim ([6]) introduced a new notion, called a $B H$-algebra, i.e., (I) $x * x=0$; (II) $x * 0=x$; (VI) $x * y=0$ and $y * x=0$ imply $x=y$, which is a generalization of $B C H / B C I / B C K$-algebras, and showed that there is a maximal ideal in bounded $B H$-algebras. J. Neggers, S. S. Ahn, and H. S. Kim ([7]) introduced a new notion, called a Q-algebra, which is also a generalization of $B C H / B C I / B C K$-algebras, and generalized several theorems discussed in $B C I$-algebras. Moreover, they introduced the notion of "quadratic" Q-algebra, and obtained the result that every quadratic Q-algebra ($X ; *, e$), $e \in X$, is of the form $x * y=x-y+e$, where $x, y \in X$ and X is a field with $|X| \geq 3$, i.e., the product is linear in a special way.

[^0]In this paper, we show that the mapping $\varphi(x)=0 * x$ is an endomorphism of a Q-algebra X, which induces a congruence relation " \sim " such that X / φ is a medial Q-algebra. We also study some decompositions of ideals in Q-algebras and obtain equivalent conditions for closed ideals. Moreover, we show that if I is an ideal of a Q-algebra X, then I^{g} is an ignorable ideal of X.

2. Preliminaries

A Q-algebra ([7]) is a non-empty set X with a constant 0 and a binary operation "*" satisfying axioms:
(I) $x * x=0$,
(II) $x * 0=x$,
(III) $(x * y) * z=(x * z) * y$
for all $x, y, z \in X$.
For brevity we also call X a Q-algebra. In X we can define a binary relation $" \leq "$ by $x \leq y$ if and only if $x * y=0$.

Example 2.1 ([1]). Let $X:=\{0,1,2,3\}$ be a set with the following table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	0	0	0
3	3	3	3	0

Then $(X ; *, 0)$ is a Q-algebra, which is not a $B C H / B C I / B C K$-algebra, since (VI) does not hold.

In a Q-algebra X the following property holds:
(IV) $(x *(x * y)) * y=0$ for any $x, y \in X$.

A $B C K$-algebra is a Q-algebra X satisfying the additional axioms:
(V) $((x * y) *(x * z)) *(z * y)=0$,
(VI) $x * y=0$ and $y * x=0$ imply $x=y$,
(VII) $0 * x=0$
for all $x, y, z \in X$.
Definition 2.2 ([7]). Let $(X ; *, 0)$ be a Q-algebra and $\emptyset \neq I \subseteq X . I$ is called a subalgebra of X if
(S) $x * y \in I$ whenever $x \in I$ and $y \in I$.
I is called an ideal of X if it satisfies:
$\left(Q_{0}\right) 0 \in I$,
$\left(Q_{1}\right) x * y \in I$ and $y \in I$ imply $x \in I$.
A Q-algebra X is called a $Q S$-algebra ([1]) if it satisfies the following identity:

$$
(x * y) *(x * z)=z * y
$$

for any $x, y, z \in X$.
Example 2.3 ([1]). Let \mathbb{Z} be the set of all integers and let $n \mathbb{Z}:=\{n z \mid z \in$ $\mathbb{Z}\}$, where $n \in \mathbb{Z}$. Then $(\mathbb{Z} ;-, 0)$ and $(n \mathbb{Z} ;-0)$ are both Q-algebras and $Q S$ algebras, where "-" is the usual subtraction of integers. Also, $(\mathbb{R} ;-, 0)$ and $(\mathbb{C} ;-0)$ are both Q-algebras and $Q S$-algebras, where \mathbb{R} is the set of all real numbers and \mathbb{C} is the set of all complex numbers.
Example 2.4 ([1]). Let $X=\{0,1,2\}$ with the table as follows:

$*$	0	1	2
0	0	0	0
1	1	0	0
2	2	0	0

Then X is both a Q-algebra and a $Q S$-algebra, but not a $B C H / B C I / B C K$ algebra, since (VI) does not hold.

3. Quotient Q-algebras

In the following, let X denote a Q-algebra unless otherwise specified.
The following lemma is useful to investigate roles of endomorphism φ of X.
Lemma 3.1. Every Q-algebra X satisfies the following property:

$$
0 *(x * y)=(0 * x) *(0 * y)
$$

for any $x, y \in X$.
Proof. For any $x, y \in X$, we have

$$
\begin{aligned}
0 *(x * y) & =((0 * y) *(0 * y)) *(x * y) \\
& =((0 * y) *(x * y)) *(0 * y) \\
& =(((x * y) * x) *(x * y)) *(0 * y) \\
& =(((x * y) *(x * y)) * x) *(0 * y) \\
& =(0 * x) *(0 * y),
\end{aligned}
$$

completing the proof.
By Lemma 3.1, the mapping $\varphi: X \rightarrow X$ defined by $\varphi(x):=0 * x$ for any $x \in X$, is an endomorphism of Q-algebras. Note that $\varphi(0)=0$. The kernel of this endomorphism, i.e., the set $\operatorname{Ker} \varphi=\{x \in X \mid 0 * x=0\}$ is a subalgebra of X. If X is a Q-algebra with the additional identity $0 * x=0$ for any $x \in X$, then $\operatorname{Ker} \varphi$ is an ideal of X.

Note that the centralizer of 0 in a Q-algebra X, i.e., the set

$$
Z_{0}=\{x \in X \mid 0 * x=x * 0\}=\{x \in X \mid 0 * x=x\}=\{x \in X \mid \varphi(x)=x\}
$$

is a subalgebra of X which is also a group. Indeed, if $Z_{0} \neq\{0\}$, then for any $x, y, z \in Z_{0}$ we have $x * y=(0 * x) * y=(0 * y) * x=y * x$ and as a consequence
$(x * y) * z=(y * x) * z=(y * z) * x=x *(y * z)$. Thus a Q-algebra is a group if and only if it satisfies the identity $0 * x=x$ for any $x \in X$, or equivalently, if and only if it is associative.

Let " ~" be a binary operation on X defined as follows:

$$
x \sim y \text { if and only if } 0 * x=0 * y
$$

in other words, $x \sim y$ if and only if $\varphi(x)=\varphi(y)$. Now we prove that " \sim " is an equivalence relation on X. Since $\varphi(x)=\varphi(x)$, we have $x \sim x$. This means that " \sim " is reflexive. If $x \sim y$ and $y \sim z$, then $\varphi(x)=\varphi(y)$ and $\varphi(y)=\varphi(z)$ and hence $\varphi(x)=\varphi(z)$. Therefore $x \sim z$, i.e., " \sim " is transitive. Thus " \sim " is an equivalence relation on X. Furthermore we have the following lemma:

Lemma 3.2. If $x \sim y$ and $u \sim v$, then $x * u \sim y * v$, i.e., " \sim " is a congruence relation in a Q-algebra X.

Proof. Since $x \sim y$ and $u \sim v$, we have $\varphi(x)=\varphi(y)$ and $\varphi(u)=\varphi(v)$ and so by Lemma 3.1, $\varphi(x * u)=0 *(x * u)=(0 * x) *(0 * u)=\varphi(x) * \varphi(u)=\varphi(y) * \varphi(v)=$ $\varphi(y * v)$. Hence $\varphi(x * u)=\varphi(y * v)$, i.e., $x * u \sim y * v$.

We denote $[x]_{\varphi}:=\{y \in X \mid x \sim y\}=\{y \in X \mid \varphi(x)=\varphi(y)\}$ by the equivalence class of x induced by the homomorphism $\varphi: X \rightarrow Y$. We claim that $[0]_{\varphi}=\operatorname{Ker} \varphi$. Indeed, if $y \in[0]_{\varphi}=\{y \in X \mid 0 \sim y\}$, then $\varphi(0)=\varphi(y)$. Since $\varphi(0)=0, \varphi(y)=0$ and so $y \in \operatorname{Ker} \varphi$. Conversely, if $y \in \operatorname{Ker} \varphi$, then $\varphi(y)=0$. Since $\varphi(0)=0, \varphi(0)=\varphi(y)$ and so $0 \sim y$. Hence $y \in[0]_{\varphi}$.

Denote $X / \varphi:=\left\{[x]_{\varphi} \mid x \in X\right\}$ and define the following operation:

$$
[x]_{\varphi} \circledast[y]_{\varphi}:=[x * y]_{\varphi} .
$$

Since " \sim " is a congruence relation on X, the operation " \circledast " is well-defined. In what follows, we prove that $\left(X / \varphi ; \circledast,[0]_{\varphi}\right)$ is a Q-algebra. Let $[x]_{\varphi},[y]_{\varphi},[z]_{\varphi}$ and $[0]_{\varphi} \in X / \varphi$. Then we have the following properties:
(1) $[x]_{\varphi} \circledast[x]_{\varphi}=[0]_{\varphi}$,
(2) $[x]_{\varphi} \circledast[0]_{\varphi}=[x * 0]_{\varphi}=[x]_{\varphi}$,
(3) $\left([x]_{\varphi} \circledast[y]_{\varphi}\right) \circledast[z]_{\varphi}=[x * y]_{\varphi} *[z]_{\varphi}=[(x * y) * z]_{\varphi}=[(x * z) * y]_{\varphi}=$ $[x * z]_{\varphi} \circledast[y]_{\varphi}=\left([x]_{\varphi} \circledast[z]_{\varphi}\right) \circledast[y]_{\varphi}$.
Summarizing the above facts we have:
Theorem 3.3. Let $\varphi: X \rightarrow Y$ be a homomorphism of Q-algebras. Then X / φ is a Q-algebra with $[0]_{\varphi}=\operatorname{Ker} \varphi$.

The Q-algebra X / φ discussed in Theorem 3.3 is called a quotient Q-algebra induced by φ.

Theorem 3.4. If $\varphi: X \rightarrow Y$ is a homomorphism of Q-algebras, then $X / \varphi \cong$ $\operatorname{Im} \varphi$.

Proof. Define $\xi: X / \varphi \rightarrow \operatorname{Im} \varphi$ by $\xi\left([x]_{\varphi}\right):=\varphi(x)$. Then it is well-defined and one-one, since $[x]_{\varphi}=[y]_{\varphi} \Leftrightarrow x \in[y]_{\varphi} \Leftrightarrow \varphi(x)=\varphi(y) \Leftrightarrow \xi\left([x]_{\varphi}\right)=\xi\left([y]_{\varphi}\right)$ for
any $[x]_{\varphi},[y]_{\varphi} \in X / \varphi$. For any $[x]_{\varphi},[y]_{\varphi} \in X / \varphi$, we have $\xi\left([x]_{\varphi} *[y]_{\varphi}\right)=\xi([x *$ $\left.y]_{\varphi}\right)=\varphi(x * y)=\varphi(x) * \varphi(y)=\xi\left([x]_{\varphi}\right) * \xi\left([y]_{\varphi}\right)$, proving that $X / \varphi \cong \operatorname{Im} \varphi$.

Definition 3.5. A Q-algebra X is said to be medial if it satisfies the following property:

$$
(x * y) *(z * u)=(x * z) *(y * u) \text { for any } x, y, z, u \in X
$$

Example 3.6. Let $X:=\mathbb{R}-\{-n\}, 0 \neq n \in \mathbb{Z}^{+}$where \mathbb{R} is the set of all real numbers and \mathbb{Z}^{+}is the set of all positive integers. If we define $x * y:=\frac{n(x-y)}{n+y}$, then $(X ; *, 0)$ is a medial Q-algebra.

Lemma 3.7. A Q-algebra X is medial if and only if it satisfies one of the following conditions: for any $x, y, z \in X$,
(i) $y * x=0 *(x * y)$,
(ii) $x *(y * z)=z *(y * x)$,
(iii) $x *(x * y)=y$,
(iv) $0 *(0 * y)=y$.

Proof. If a Q-algebra X is medial, then $y * x=(y * x) * 0=(y * x) *(y * y)=$ $(y * y) *(x * y)=0 *(x * y)$. Let us assume (i) holds in X. Then $x *(y * z)=$ $0 *((y * z) * x)=0 *((y * x) * z)=z *(y * x)$, which proves (ii). The condition (ii) implies mediality. Indeed, we have $(x * y) *(z * u)=u *(z *(x * y))=$ $u *(y *(x * z))=(x * z) *(y * u)$, i.e., $(x * y) *(z * u)=(x * z) *(y * u)$.
Assume (i) holds. Then $x *(x * y)=0 *((x * y) * x))=0 *((x * x) * y)=$ $0 *(0 * y)=y * 0=y$. Hence $x *(x * y)=y$, proving (iii). If we put $x:=0$ in (iii), then $0 *(0 * y)=y$, which proves (iv). Suppose (iv) holds. Then by Lemma 3.1 $x * y=0 *(0 *(x * y))=0 *((0 * x) *(0 * y))=0 *((0 *(0 * y)) * x)=0 *(y * x)$. Hence $x * y=0 *(y * x)$, which completes the proof.

Corollary 3.8. A Q-algebra is medial if and only if it is a medial $Q S$-algebra.
Proof. It is enough to prove the axiom $(x * y) *(x * z)=z * y$ is satisfied. In fact, by Lemma 3.7, we have

$$
(x * y) *(x * z)=(x * x) *(y * z)=0 *(y * z)=z * y
$$

proving the proof.
Lemma 3.9. A-algebra X is associative if and only if $0 * x=x$ for any $x \in X$.

Proof. If X is associative, then $(x * x) * x=x *(x * x)$ which gives $0 * x=x$ for any $x \in X$.

Conversely, assume $0 * x=x$ for any $x \in X$. Then $x *(y * z)=(0 * x) *(y * z)=$ $(0 *(y * z)) * x=(y * z) * x=(y * x) * z=((0 * y) * x) * z=((0 * x) * y) * z=(x * y) * z$. Thus X is associative.

Corollary 3.10. Every associative Q-algebra is medial.

Proof. By Lemma 3.9, $0 * x=x$ for any $x \in X$. For any $x, y \in X$, we have $x * y=(0 * x) * y=(0 * y) * x=0 *(y * x)$. It follows from Lemma 3.7 that X is a medial Q-algebra.

Proposition 3.11. Every $Q S$-algebra satisfies the identity:

$$
0 *(0 *(0 * x))=0 * x \quad \text { for any } x \in X
$$

Proof. $0 *(0 *(0 * x))=(0 * 0) *(0 *(0 * x))=(0 * x) * 0=0 * x$.

4. Some decompositions of ideals in Q-algebras

For any Q-algebra X and $x, y \in X$, denote

$$
A(x, y):=\{z \in X \mid(z * x) * y=0\} .
$$

Theorem 4.1. If I is an ideal of a Q-algebra X, then

$$
I=\cup_{x, y \in I} A(x, y) .
$$

Proof. Let I be an ideal of a Q-algebra X. If $z \in I$, then since $(z * 0) * z=$ $(z * z) * 0=0 * 0=0$, we have $z \in A(0, z)$. Hence

$$
I \subseteq \cup_{z \in I} A(0, z) \subseteq \cup_{x, y \in I} A(x, y)
$$

Let $z \in \cup_{x, y \in I} A(x, y)$. Then there exist $a, b \in I$ such that $z \in A(a, b)$, so that $(z * a) * b=0$. Since I is an ideal, it follows that $z \in I$. Thus $\cup_{x, y \in I} A(x, y) \subseteq I$, and consequently $I=\cup_{x, y \in I} A(x, y)$.

Corollary 4.2. If I is an ideal of a Q-algebra X, then

$$
I=\cup_{x \in I} A(0, x)=\cup_{x \in I} A(x, 0)
$$

Proof. By Theorem 4.1, we have $\cup_{x \in I} A(0, x) \subseteq \cup_{x, y \in X} A(x, y)=I$. If $x \in I$, then $x \in A(0, x)$ because $(x * 0) * x=0$. Hence $I \subseteq \cup_{x \in I} A(0, x)$. Since $(x * y) * z=(x * z) * y$, we have $\cup_{x \in I} A(0, x)=\cup_{x \in I} A(x, 0)$. This completes the proof.

Theorem 4.3. Let I be a subset of a Q-algebra X such that $0 \in I$ and $I=$ $\cup_{x, y \in I} A(x, y)$. Then I is an ideal of X.

Proof. Let $x * y, y \in I=\cup_{x, y \in I} A(x, y)$. Since $(x *(x * y)) * y=(x * y) *(x * y)=0$, we have $x \in A(x * y, y) \subseteq I$. Hence I is an ideal of X.

Combining Theorems 4.1 and 4.3, we have the following corollary.
Corollary 4.4. Let X be a Q-algebra and let I be a subset of X containing 0 . Then I is an ideal of X if and only if $I=\cup_{x, y \in I} A(x, y)$.

Definition 4.5. Let $(X ; *, 0)$ be a Q-algebra and let $\emptyset \neq I \subset X$. An ideal I is said to be closed of X if $0 * x \in I$ for all $x \in I$.

Clearly, a closed ideal of a Q-algebra X is a subalgebra of X. Now we give a characterization of closed ideals.

Theorem 4.6. Let I be a subset of a Q-algebra X. Then I is a closed ideal of X if and only if it satisfies
(i) $0 \in I$,
(ii) $x * z \in I, y * z \in I$ and $z \in I$ imply $x * y \in I$.

Proof. Let I be a closed ideal of X. Clearly $0 \in I$. Assume that $x * z, y * z, z \in I$. Since I is an ideal, we have $x, y \in I$, which implies that $x * y \in I$ because I is a closed ideal and hence a subalgebra of X.

Conversely assume that I satisfies (i) and (ii). Let $x * y, y \in I$. Since $0 * 0, y * 0,0 \in I$, by (ii) we have $0 * y \in I$. From (ii) again it follows that $x=x * 0 \in I$, so that I is an ideal of X. Now suppose that $x \in I$. Since $0 * 0, x * 0,0 \in I$, we obtain $0 * x \in I$ by (ii). This completes the proof.

Theorem 4.7. Let I be an ideal of a Q-algebra X. The set

$$
I^{0}:=\{x \in I \mid 0 * x \in I\}
$$

is the greatest closed ideal of X which is contained in I.
Proof. First we show that I^{0} is an ideal of X. Clearly, $0 \in I^{0}$. For any $x, y \in X$, if $x * y, y \in I^{0}$, then $0 * y \in I$. By Lemma 3.1, we have

$$
(0 * x) *(0 * y)=0 *(x * y) \in I
$$

Since I is an ideal of X, it follows that $0 * x \in I$. Hence $x \in I^{0}$, which proves that I^{0} is an ideal of X. If $x \in I^{0}$, since $I^{0} \subseteq I$, we have $x \in I$ and $0 * x \in I$. Since $(0 *(0 * x)) * x=0$, it follows from I is an ideal of X that $0 *(0 * x) \in I$, which implies $0 * x \in I^{0}$. This proves that I^{0} is closed. Now, assume that A is a closed ideal of X which is contained in I. Let $x \in A$. Then $0 * x \in A$. Since A is contained in I, we have $x, 0 * x \in I$, and so $x \in I^{0}$. Thus $A \subseteq I^{0}$. Therefore I^{0} is the greatest closed ideal of X which is contained in I.

Definition 4.8. An ideal I of a Q-algebra X is said to be ignorable if $I^{0}=\{0\}$.
Example 4.9. Let X be the set of all real numbers and let $C(X)$ be the set of all real-valued continuous functions on X. The operation " $*$ " is defined as follows:

$$
(f * g)(x):=f(x)-g(x) \text { for all } x \in X
$$

The nullary operation 0 is the constant function 0 . Then it is easy to show that $(C(X) ; *, 0)$ is a Q-algebra. If we define $P(X):=\{f \in C(X) \mid f(x) \geq$ $0, \forall x \in X\}$, then $P(X)$ is an ideal of $C(X)$, but it is not a subalgebra of $C(X)$, since if we let $f(x):=3$ and $g(x):=5$, where f and g are in $P(X)$, then $(f * g)(x)=f(x)-g(x)=3-5=-2<0$ and so $f * g \notin P(X)$. Moreover, $P(X)^{0}=\{0\}$.

Theorem 4.10. Let I be an ideal of a medial Q-algebra X. Then $I^{g}:=$ $\left(I-I^{0}\right) \cup\{0\}$ is an ignorable ideal of X.

Proof. Let $x, y \in X$ be such that $x * y \in I^{g}$ and $y \in I^{g}$. If $y=0$, then $x=x * 0=x * y \in I^{g}$. Assume that $y \neq 0$. Clearly, $x * y, y \in I$, which implies that $x \in I$. Assume that $x \in I^{0}-\{0\}$. Then $x \neq 0$ and $0 * x \in I$. Since $y \neq 0$, it follows from $y \in I^{g}$ that $y \in I-I^{0}$, so that $0 * y \notin I$. Since X is a medial Q-algebra, we have $(0 * y) *(0 * y)=(0 *(0 * x)) * y=x * y$ by Lemma 3.7. Since $x * y \in I$, we obtain $(0 * y) *(0 * x) \in I$. Since $0 * x \in I$, we have $0 * y \in I$. This is a contradiction. Hence $x \notin I^{0}-\{0\}$, i.e., $x \in I^{g}$. This proves that I^{g} is an ideal of X. Now we show that $\left(I^{g}\right)^{0}=\{0\}$. If $x \in\left(I^{g}\right)^{0}$, then $x \in I^{g}$ and $0 * x \in I^{g}$. From $x \in I^{g}$ it follows that $x=0$ or $x \in I-I^{0}$. If $x \in I-I^{0}$, then $0 * x \notin I$, which is a contradiction. Thus $x=0$. This completes the proof.

The following corollary is obvious.
Corollary 4.11. Let I be an ideal of a Q-algebra X. Then

$$
I^{0} \cup I^{g}=I \text { and } I^{0} \cap I^{g}=\{0\} .
$$

References

[1] S. S. Ahn and H. S. Kim, On QS-algebras, J. Chungcheong Math. Soc. 12 (1999), 33-41.
[2] Q. P. Hu and X. Li, On BCH-algebras, Math. Sem. Notes Kobe Univ. 11 (1983), no. 2, part 2, 313-320.
[3] , On proper BCH-algebras, Math. Japon. 30 (1985), no. 4, 659-661.
[4] K. Iséki, On BCI-algebras, Math. Sem. Notes Kobe Univ. 8 (1980), no. 1, 125-130.
[5] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978/79), no. 1, 1-26.
[6] Y. B. Jun, E. H. Roh, and H. S. Kim, On BH-algebras, Sci. Math. 1 (1998), no. 3, 347-354
[7] J. Neggers, S. S. Ahn, and H. S. Kim, On Q-algebras, Int. J. Math. Math. Sci. 27 (2001), no. 12, 749-757.
[8] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), no. 1, 19-26.
Sun Shin Ahn
Department of Mathematics Education
Dongguk University
Seoul 100-715, Korea
E-mail address: sunshine@dongguk.edu
Keum Sook So
Department of Mathematics
Hallym University
Chuncheon 200-702, Korea
E-mail address: ksso@hallym.ac.kr

[^0]: Received October 16, 2009.
 2000 Mathematics Subject Classification. 06F35, 03G25.
 Key words and phrases. Q-algebra, medial Q-algebra.
 This research was supported by Hallym University Research Fund, 2009 (HRF-2009-025).

