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ON MEDIAL Q-ALGEBRAS

Sun Shin Ahn and Keum Sook So

Abstract. In this paper, we show that the mapping ϕ(x) = 0 ∗ x is an
endomorphism of a Q-algebra X, which induces a congruence relation
“ ∼ ” such that X/ϕ is a medial Q-algebra. We also study some de-
compositions of ideals in Q-algebras and obtain equivalent conditions for
closed ideals. Moreover, we show that if I is an ideal of a Q-algebra X,
then Ig is an ignorable ideal of X.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-
algebras and BCI-algebras ([4, 5]). It is known that the class of BCK-algebras
is a proper subclass of the class of BCI-algebras. In [2, 3], Q. P. Hu and X.
Li introduced a wide class of abstract algebras: BCH-algebras. They have
shown that the class of BCI-algebras is a proper subclass of the class of BCH-
algebras. J. Neggers and H. S. Kim ([8]) introduced the notion of d-algebras,
i.e., (I) x∗x = 0; (VII) 0∗x = 0; (VI) x∗y = 0 and y∗x = 0 imply x = y, which
is another useful generalization of BCK-algebras, and investigated several rela-
tions between d-algebras and BCK-algebras, and then they investigated other
relations between d-algebras and oriented digraphs. On the while, Y. B. Jun,
E. H. Roh, and H. S. Kim ([6]) introduced a new notion, called a BH-algebra,
i.e., (I) x∗x = 0; (II) x∗0 = x; (VI) x∗y = 0 and y ∗x = 0 imply x = y, which
is a generalization of BCH/BCI/BCK-algebras, and showed that there is a
maximal ideal in bounded BH-algebras. J. Neggers, S. S. Ahn, and H. S. Kim
([7]) introduced a new notion, called a Q-algebra, which is also a generalization
of BCH/BCI/BCK-algebras, and generalized several theorems discussed in
BCI-algebras. Moreover, they introduced the notion of “quadratic”Q-algebra,
and obtained the result that every quadratic Q-algebra (X; ∗, e), e ∈ X, is of
the form x ∗ y = x− y + e, where x, y ∈ X and X is a field with |X| ≥ 3, i.e.,
the product is linear in a special way.
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In this paper, we show that the mapping ϕ(x) = 0∗x is an endomorphism of
a Q-algebra X, which induces a congruence relation “ ∼ ” such that X/ϕ is a
medial Q-algebra. We also study some decompositions of ideals in Q-algebras
and obtain equivalent conditions for closed ideals. Moreover, we show that if
I is an ideal of a Q-algebra X, then Ig is an ignorable ideal of X.

2. Preliminaries

A Q-algebra ([7]) is a non-empty set X with a constant 0 and a binary
operation “ ∗ ” satisfying axioms:

(I) x ∗ x = 0,
(II) x ∗ 0 = x,

(III) (x ∗ y) ∗ z = (x ∗ z) ∗ y

for all x, y, z ∈ X.
For brevity we also call X a Q-algebra. In X we can define a binary relation
“ ≤ ” by x ≤ y if and only if x ∗ y = 0.

Example 2.1 ([1]). Let X := {0, 1, 2, 3} be a set with the following table:

* 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 0 0 0
3 3 3 3 0

Then (X; ∗, 0) is a Q-algebra, which is not a BCH/BCI/BCK-algebra, since
(VI) does not hold.

In a Q-algebra X the following property holds:
(IV) (x ∗ (x ∗ y)) ∗ y = 0 for any x, y ∈ X.

A BCK-algebra is a Q-algebra X satisfying the additional axioms:
(V) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(VI) x ∗ y = 0 and y ∗ x = 0 imply x = y,
(VII) 0 ∗ x = 0

for all x, y, z ∈ X.

Definition 2.2 ([7]). Let (X; ∗, 0) be a Q-algebra and ∅ 6= I ⊆ X. I is called
a subalgebra of X if

(S) x ∗ y ∈ I whenever x ∈ I and y ∈ I.
I is called an ideal of X if it satisfies:

(Q0) 0 ∈ I,
(Q1) x ∗ y ∈ I and y ∈ I imply x ∈ I.

A Q-algebra X is called a QS-algebra ([1]) if it satisfies the following identity:

(x ∗ y) ∗ (x ∗ z) = z ∗ y
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for any x, y, z ∈ X.

Example 2.3 ([1]). Let Z be the set of all integers and let nZ := {nz|z ∈
Z}, where n ∈ Z. Then (Z;−, 0) and (nZ;−, 0) are both Q-algebras and QS-
algebras, where “−” is the usual subtraction of integers. Also, (R;−, 0) and
(C;−, 0) are both Q-algebras and QS-algebras, where R is the set of all real
numbers and C is the set of all complex numbers.

Example 2.4 ([1]). Let X = {0, 1, 2} with the table as follows:

* 0 1 2
0 0 0 0
1 1 0 0
2 2 0 0

Then X is both a Q-algebra and a QS-algebra, but not a BCH/BCI/BCK-
algebra, since (VI) does not hold.

3. Quotient Q-algebras

In the following, let X denote a Q-algebra unless otherwise specified.
The following lemma is useful to investigate roles of endomorphism ϕ of X.

Lemma 3.1. Every Q-algebra X satisfies the following property:

0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y)

for any x, y ∈ X.

Proof. For any x, y ∈ X, we have
0 ∗ (x ∗ y) = ((0 ∗ y) ∗ (0 ∗ y)) ∗ (x ∗ y)

=((0 ∗ y) ∗ (x ∗ y)) ∗ (0 ∗ y)

= (((x ∗ y) ∗ x) ∗ (x ∗ y)) ∗ (0 ∗ y)

= (((x ∗ y) ∗ (x ∗ y)) ∗ x) ∗ (0 ∗ y)

= (0 ∗ x) ∗ (0 ∗ y),

completing the proof. ¤
By Lemma 3.1, the mapping ϕ : X → X defined by ϕ(x) := 0 ∗ x for any

x ∈ X, is an endomorphism of Q-algebras. Note that ϕ(0) = 0. The kernel of
this endomorphism, i.e., the set Kerϕ = {x ∈ X | 0 ∗ x = 0} is a subalgebra of
X. If X is a Q-algebra with the additional identity 0 ∗ x = 0 for any x ∈ X,
then Kerϕ is an ideal of X.

Note that the centralizer of 0 in a Q-algebra X, i.e., the set

Z0 = {x ∈ X | 0 ∗ x = x ∗ 0} = {x ∈ X | 0 ∗ x = x} = {x ∈ X | ϕ(x) = x}
is a subalgebra of X which is also a group. Indeed, if Z0 6= {0}, then for any
x, y, z ∈ Z0 we have x ∗ y = (0 ∗x) ∗ y = (0 ∗ y) ∗x = y ∗x and as a consequence
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(x ∗ y) ∗ z = (y ∗ x) ∗ z = (y ∗ z) ∗ x = x ∗ (y ∗ z). Thus a Q-algebra is a group
if and only if it satisfies the identity 0 ∗ x = x for any x ∈ X, or equivalently,
if and only if it is associative.

Let “ ∼ ” be a binary operation on X defined as follows:

x ∼ y if and only if 0 ∗ x = 0 ∗ y,

in other words, x ∼ y if and only if ϕ(x) = ϕ(y). Now we prove that “ ∼ ” is
an equivalence relation on X. Since ϕ(x) = ϕ(x), we have x ∼ x. This means
that “ ∼ ” is reflexive. If x ∼ y and y ∼ z, then ϕ(x) = ϕ(y) and ϕ(y) = ϕ(z)
and hence ϕ(x) = ϕ(z). Therefore x ∼ z, i.e., “ ∼ ” is transitive. Thus “ ∼ ”
is an equivalence relation on X. Furthermore we have the following lemma:

Lemma 3.2. If x ∼ y and u ∼ v, then x∗u ∼ y ∗v, i.e., “ ∼ ” is a congruence
relation in a Q-algebra X.

Proof. Since x ∼ y and u ∼ v, we have ϕ(x) = ϕ(y) and ϕ(u) = ϕ(v) and so by
Lemma 3.1, ϕ(x∗u) = 0∗(x∗u) = (0∗x)∗(0∗u) = ϕ(x)∗ϕ(u) = ϕ(y)∗ϕ(v) =
ϕ(y ∗ v). Hence ϕ(x ∗ u) = ϕ(y ∗ v), i.e., x ∗ u ∼ y ∗ v. ¤

We denote [x]ϕ := {y ∈ X | x ∼ y} = {y ∈ X | ϕ(x) = ϕ(y)} by the
equivalence class of x induced by the homomorphism ϕ : X → Y . We claim
that [0]ϕ = Kerϕ. Indeed, if y ∈ [0]ϕ = {y ∈ X | 0 ∼ y}, then ϕ(0) = ϕ(y).
Since ϕ(0) = 0, ϕ(y) = 0 and so y ∈ Kerϕ. Conversely, if y ∈ Kerϕ, then
ϕ(y) = 0. Since ϕ(0) = 0, ϕ(0) = ϕ(y) and so 0 ∼ y. Hence y ∈ [0]ϕ.

Denote X/ϕ := {[x]ϕ | x ∈ X} and define the following operation:

[x]ϕ ~ [y]ϕ := [x ∗ y]ϕ.

Since “ ∼ ” is a congruence relation on X, the operation “ ~ ” is well-defined.
In what follows, we prove that (X/ϕ;~, [0]ϕ) is a Q-algebra. Let [x]ϕ, [y]ϕ, [z]ϕ
and [0]ϕ ∈ X/ϕ. Then we have the following properties:

(1) [x]ϕ ~ [x]ϕ = [0]ϕ,
(2) [x]ϕ ~ [0]ϕ = [x ∗ 0]ϕ = [x]ϕ,
(3) ([x]ϕ ~ [y]ϕ) ~ [z]ϕ = [x ∗ y]ϕ ∗ [z]ϕ = [(x ∗ y) ∗ z]ϕ = [(x ∗ z) ∗ y]ϕ =

[x ∗ z]ϕ ~ [y]ϕ = ([x]ϕ ~ [z]ϕ) ~ [y]ϕ.
Summarizing the above facts we have:

Theorem 3.3. Let ϕ : X → Y be a homomorphism of Q-algebras. Then X/ϕ
is a Q-algebra with [0]ϕ = Kerϕ.

The Q-algebra X/ϕ discussed in Theorem 3.3 is called a quotient Q-algebra
induced by ϕ.

Theorem 3.4. If ϕ : X → Y is a homomorphism of Q-algebras, then X/ϕ ∼=
Imϕ.

Proof. Define ξ : X/ϕ → Imϕ by ξ([x]ϕ) := ϕ(x). Then it is well-defined and
one-one, since [x]ϕ = [y]ϕ ⇔ x ∈ [y]ϕ ⇔ ϕ(x) = ϕ(y) ⇔ ξ([x]ϕ) = ξ([y]ϕ) for
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any [x]ϕ, [y]ϕ ∈ X/ϕ. For any [x]ϕ, [y]ϕ ∈ X/ϕ, we have ξ([x]ϕ ∗ [y]ϕ) = ξ([x ∗
y]ϕ) = ϕ(x ∗ y) = ϕ(x) ∗ϕ(y) = ξ([x]ϕ) ∗ ξ([y]ϕ), proving that X/ϕ ∼= Imϕ. ¤

Definition 3.5. A Q-algebra X is said to be medial if it satisfies the following
property:

(x ∗ y) ∗ (z ∗ u) = (x ∗ z) ∗ (y ∗ u) for any x, y, z, u ∈ X.

Example 3.6. Let X := R− {−n}, 0 6= n ∈ Z+ where R is the set of all real
numbers and Z+ is the set of all positive integers. If we define x ∗ y := n(x−y)

n+y ,
then (X; ∗, 0) is a medial Q-algebra.

Lemma 3.7. A Q-algebra X is medial if and only if it satisfies one of the
following conditions: for any x, y, z ∈ X,

(i) y ∗ x = 0 ∗ (x ∗ y),
(ii) x ∗ (y ∗ z) = z ∗ (y ∗ x),
(iii) x ∗ (x ∗ y) = y,
(iv) 0 ∗ (0 ∗ y) = y.

Proof. If a Q-algebra X is medial, then y ∗ x = (y ∗ x) ∗ 0 = (y ∗ x) ∗ (y ∗ y) =
(y ∗ y) ∗ (x ∗ y) = 0 ∗ (x ∗ y). Let us assume (i) holds in X. Then x ∗ (y ∗ z) =
0 ∗ ((y ∗ z) ∗ x) = 0 ∗ ((y ∗ x) ∗ z) = z ∗ (y ∗ x), which proves (ii). The condition
(ii) implies mediality. Indeed, we have (x ∗ y) ∗ (z ∗ u) = u ∗ (z ∗ (x ∗ y)) =
u ∗ (y ∗ (x ∗ z)) = (x ∗ z) ∗ (y ∗ u), i.e., (x ∗ y) ∗ (z ∗ u) = (x ∗ z) ∗ (y ∗ u).
Assume (i) holds. Then x ∗ (x ∗ y) = 0 ∗ ((x ∗ y) ∗ x)) = 0 ∗ ((x ∗ x) ∗ y) =
0∗(0∗y) = y∗0 = y. Hence x∗(x∗y) = y, proving (iii). If we put x := 0 in (iii),
then 0∗ (0∗y) = y, which proves (iv). Suppose (iv) holds. Then by Lemma 3.1
x ∗ y = 0 ∗ (0 ∗ (x ∗ y)) = 0 ∗ ((0 ∗x) ∗ (0 ∗ y)) = 0 ∗ ((0 ∗ (0 ∗ y)) ∗x) = 0 ∗ (y ∗x).
Hence x ∗ y = 0 ∗ (y ∗ x), which completes the proof. ¤

Corollary 3.8. A Q-algebra is medial if and only if it is a medial QS-algebra.

Proof. It is enough to prove the axiom (x ∗ y) ∗ (x ∗ z) = z ∗ y is satisfied. In
fact, by Lemma 3.7, we have

(x ∗ y) ∗ (x ∗ z) = (x ∗ x) ∗ (y ∗ z) = 0 ∗ (y ∗ z) = z ∗ y,

proving the proof. ¤

Lemma 3.9. A Q-algebra X is associative if and only if 0 ∗ x = x for any
x ∈ X.

Proof. If X is associative, then (x ∗ x) ∗ x = x ∗ (x ∗ x) which gives 0 ∗ x = x
for any x ∈ X.

Conversely, assume 0∗x = x for any x ∈ X. Then x∗(y∗z) = (0∗x)∗(y∗z) =
(0∗(y∗z))∗x = (y∗z)∗x = (y∗x)∗z = ((0∗y)∗x)∗z = ((0∗x)∗y)∗z = (x∗y)∗z.
Thus X is associative. ¤

Corollary 3.10. Every associative Q-algebra is medial.
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Proof. By Lemma 3.9, 0 ∗ x = x for any x ∈ X. For any x, y ∈ X, we have
x ∗ y = (0 ∗ x) ∗ y = (0 ∗ y) ∗ x = 0 ∗ (y ∗ x). It follows from Lemma 3.7 that X
is a medial Q-algebra. ¤

Proposition 3.11. Every QS-algebra satisfies the identity:

0 ∗ (0 ∗ (0 ∗ x)) = 0 ∗ x for any x ∈ X.

Proof. 0 ∗ (0 ∗ (0 ∗ x)) = (0 ∗ 0) ∗ (0 ∗ (0 ∗ x)) = (0 ∗ x) ∗ 0 = 0 ∗ x. ¤

4. Some decompositions of ideals in Q-algebras

For any Q-algebra X and x, y ∈ X, denote

A(x, y) := {z ∈ X | (z ∗ x) ∗ y = 0}.
Theorem 4.1. If I is an ideal of a Q-algebra X, then

I = ∪x,y∈IA(x, y).

Proof. Let I be an ideal of a Q-algebra X. If z ∈ I, then since (z ∗ 0) ∗ z =
(z ∗ z) ∗ 0 = 0 ∗ 0 = 0, we have z ∈ A(0, z). Hence

I ⊆ ∪z∈IA(0, z) ⊆ ∪x,y∈IA(x, y).

Let z ∈ ∪x,y∈IA(x, y). Then there exist a, b ∈ I such that z ∈ A(a, b), so that
(z ∗a)∗b = 0. Since I is an ideal, it follows that z ∈ I. Thus ∪x,y∈IA(x, y) ⊆ I,
and consequently I = ∪x,y∈IA(x, y). ¤

Corollary 4.2. If I is an ideal of a Q-algebra X, then

I = ∪x∈IA(0, x) = ∪x∈IA(x, 0).

Proof. By Theorem 4.1, we have ∪x∈IA(0, x) ⊆ ∪x,y∈XA(x, y) = I. If x ∈ I,
then x ∈ A(0, x) because (x ∗ 0) ∗ x = 0. Hence I ⊆ ∪x∈IA(0, x). Since
(x ∗ y) ∗ z = (x ∗ z) ∗ y, we have ∪x∈IA(0, x) = ∪x∈IA(x, 0). This completes the
proof. ¤

Theorem 4.3. Let I be a subset of a Q-algebra X such that 0 ∈ I and I =
∪x,y∈IA(x, y). Then I is an ideal of X.

Proof. Let x∗y, y ∈ I = ∪x,y∈IA(x, y). Since (x∗(x∗y))∗y = (x∗y)∗(x∗y) = 0,
we have x ∈ A(x ∗ y, y) ⊆ I. Hence I is an ideal of X. ¤

Combining Theorems 4.1 and 4.3, we have the following corollary.

Corollary 4.4. Let X be a Q-algebra and let I be a subset of X containing 0.
Then I is an ideal of X if and only if I = ∪x,y∈IA(x, y).

Definition 4.5. Let (X; ∗, 0) be a Q-algebra and let ∅ 6= I ⊂ X. An ideal I is
said to be closed of X if 0 ∗ x ∈ I for all x ∈ I.

Clearly, a closed ideal of a Q-algebra X is a subalgebra of X. Now we give
a characterization of closed ideals.
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Theorem 4.6. Let I be a subset of a Q-algebra X. Then I is a closed ideal of
X if and only if it satisfies

(i) 0 ∈ I,
(ii) x ∗ z ∈ I, y ∗ z ∈ I and z ∈ I imply x ∗ y ∈ I.

Proof. Let I be a closed ideal of X. Clearly 0 ∈ I. Assume that x∗z, y∗z, z ∈ I.
Since I is an ideal, we have x, y ∈ I, which implies that x ∗ y ∈ I because I is
a closed ideal and hence a subalgebra of X.

Conversely assume that I satisfies (i) and (ii). Let x ∗ y, y ∈ I. Since
0 ∗ 0, y ∗ 0, 0 ∈ I, by (ii) we have 0 ∗ y ∈ I. From (ii) again it follows that
x = x ∗ 0 ∈ I, so that I is an ideal of X. Now suppose that x ∈ I. Since
0 ∗ 0, x ∗ 0, 0 ∈ I, we obtain 0 ∗ x ∈ I by (ii). This completes the proof. ¤

Theorem 4.7. Let I be an ideal of a Q-algebra X. The set

I0 := {x ∈ I | 0 ∗ x ∈ I}
is the greatest closed ideal of X which is contained in I.

Proof. First we show that I0 is an ideal of X. Clearly, 0 ∈ I0. For any x, y ∈ X,
if x ∗ y, y ∈ I0, then 0 ∗ y ∈ I. By Lemma 3.1, we have

(0 ∗ x) ∗ (0 ∗ y) = 0 ∗ (x ∗ y) ∈ I.

Since I is an ideal of X, it follows that 0 ∗ x ∈ I. Hence x ∈ I0, which proves
that I0 is an ideal of X. If x ∈ I0, since I0 ⊆ I, we have x ∈ I and 0 ∗ x ∈ I.
Since (0 ∗ (0 ∗ x)) ∗ x = 0, it follows from I is an ideal of X that 0 ∗ (0 ∗ x) ∈ I,
which implies 0 ∗ x ∈ I0. This proves that I0 is closed. Now, assume that A
is a closed ideal of X which is contained in I. Let x ∈ A. Then 0 ∗ x ∈ A.
Since A is contained in I, we have x, 0 ∗ x ∈ I, and so x ∈ I0. Thus A ⊆ I0.
Therefore I0 is the greatest closed ideal of X which is contained in I. ¤

Definition 4.8. An ideal I of a Q-algebra X is said to be ignorable if I0 = {0}.
Example 4.9. Let X be the set of all real numbers and let C(X) be the set
of all real-valued continuous functions on X. The operation “ ∗ ” is defined as
follows:

(f ∗ g)(x) := f(x)− g(x) for all x ∈ X.

The nullary operation 0 is the constant function 0. Then it is easy to show
that (C(X); ∗, 0) is a Q-algebra. If we define P (X) := {f ∈ C(X) | f(x) ≥
0,∀x ∈ X}, then P (X) is an ideal of C(X), but it is not a subalgebra of C(X),
since if we let f(x) := 3 and g(x) := 5, where f and g are in P (X), then
(f ∗ g)(x) = f(x) − g(x) = 3 − 5 = −2 < 0 and so f ∗ g /∈ P (X). Moreover,
P (X)0 = {0}.
Theorem 4.10. Let I be an ideal of a medial Q-algebra X. Then Ig :=
(I − I0) ∪ {0} is an ignorable ideal of X.



372 SUN SHIN AHN AND KEUM SOOK SO

Proof. Let x, y ∈ X be such that x ∗ y ∈ Ig and y ∈ Ig. If y = 0, then
x = x ∗ 0 = x ∗ y ∈ Ig. Assume that y 6= 0. Clearly, x ∗ y, y ∈ I, which implies
that x ∈ I. Assume that x ∈ I0 − {0}. Then x 6= 0 and 0 ∗ x ∈ I. Since y 6= 0,
it follows from y ∈ Ig that y ∈ I − I0, so that 0 ∗ y /∈ I. Since X is a medial
Q-algebra, we have (0 ∗ y) ∗ (0 ∗ y) = (0 ∗ (0 ∗ x)) ∗ y = x ∗ y by Lemma 3.7.
Since x ∗ y ∈ I, we obtain (0 ∗ y) ∗ (0 ∗x) ∈ I. Since 0 ∗x ∈ I, we have 0 ∗ y ∈ I.
This is a contradiction. Hence x /∈ I0 − {0}, i.e., x ∈ Ig. This proves that Ig

is an ideal of X. Now we show that (Ig)0 = {0}. If x ∈ (Ig)0, then x ∈ Ig and
0 ∗ x ∈ Ig. From x ∈ Ig it follows that x = 0 or x ∈ I − I0. If x ∈ I − I0, then
0 ∗ x /∈ I, which is a contradiction. Thus x = 0. This completes the proof. ¤

The following corollary is obvious.

Corollary 4.11. Let I be an ideal of a Q-algebra X. Then

I0 ∪ Ig = I and I0 ∩ Ig = {0}.
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