Commun. Korean Math. Soc. ${\bf 25}$ (2010), No. 3, pp. 335–342 DOI 10.4134/CKMS.2010.25.3.335

FUZZY TOPOLOGICAL SPACES BASED ON WFI-ALGEBRAS

Young Bae Jun

ABSTRACT. The structure of fuzzy topological spaces based on WFIalgebras is considered. The notions of WFI-fuzzy topological spaces and WFI-fuzzy continuous mappings are introduced, and several properties are investigated. A relation between WFI-homomorphism and WFI-fuzzy continuous mapping is given.

1. Introduction

In 1990, Wu [10] introduced the notion of fuzzy implication algebras (FIalgebra, for short), and investigated several properties. In [7], Li and Zheng introduced the notion of distributive (resp. regular, commutative) FI-algebras, and investigated the relations between such FI-algebras and MV-algebras. In [3], Jun discussed several aspects of WFI-algebras. He introduced the notion of associative (resp. normal, medial) WFI-algebras, and investigated several properties. He gave conditions for a WFI-algebra to be associative/medial, and provided characterizations of associative/medial WFI-algebras, and showed that every associative WFI-algebra is a group in which every element is an involution. He also verified that the class of all medial WFI-algebras is a variety. Jun and Song [6] introduced the notions of simulative and/or mutant WFI-algebras and investigated some properties. They established characterizations of a simulative WFI-algebra, and gave a relation between an associative WFI-algebra and a simulative WFI-algebra. They also found some types for a simulative WFI-algebra to be mutant. Jun et al. [5] introduced the concept of ideals of WFI-algebras, and gave relations between a filter and an ideal. Moreover, they provided characterizations of an ideal, and established an extension property for an ideal. After Zadeh introduced the concept of fuzzy sets in [11], Chang [2] used the concept of fuzzy sets to introduce fuzzy topological spaces, and then several authors continued the investigation of such spaces. Caldas et al. [1] introduced and characterized fuzzy weakly θ -closed functions between fuzzy

O2010 The Korean Mathematical Society

Received May 24, 2009.

²⁰⁰⁰ Mathematics Subject Classification. 03G25, 03C05, 08A05.

Key words and phrases. WFI-algebra, fuzzy subalgebra, WFI-homomorphism, WFI-fuzzy topological space, WFI-fuzzy continuous mapping.

topological spaces. Lupiáñez [8] introduced the concept of C-scattered fuzzy topological spaces and obtained some properties. Lupiáñez [9] also introduced the notion of fuzzy partition of unity, and obtained some results about this concept.

In this paper, we consider the structure of fuzzy topological spaces based on WFI-algebras. We introduce the notion of WFI-fuzzy topological spaces and WFI-fuzzy continuous mappings, and investigates several properties. We give a relation between WFI-homomorphism and WFI-fuzzy continuous mapping.

2. Preliminaries

Let $K(\tau)$ be the class of all algebras of type $\tau = (2,0)$. By a WFI-algebra we mean a system $\mathfrak{X} := (X, \ominus, 1) \in K(\tau)$ in which the following axioms hold:

- (a1) $(x \in X) (x \ominus x = 1),$
- (a2) $(x, y \in X) \ (x \ominus y = y \ominus x = 1 \Rightarrow x = y),$
- (a3) $(x, y, z \in X)$ $(x \ominus (y \ominus z) = y \ominus (x \ominus z)),$
- (a4) $(x, y, z \in X) ((x \ominus y) \ominus ((y \ominus z) \ominus (x \ominus z)) = 1).$

We call the special element 1 the *unit*. For the convenience of notation, we shall write $[x, y_1, y_2, \ldots, y_n]$ for

$$(\cdots ((x \ominus y_1) \ominus y_2) \ominus \cdots) \ominus y_n$$

We define $[x, y]^0 = x$, and for n > 0, $[x, y]^n = [x, y, y, \dots, y]$, where y occurs *n*-times. We use the notation $x^n \ominus y$ instead of $x \ominus (\cdots (x \ominus (x \ominus y)) \cdots)$ in which x occurs *n*-times.

Proposition 2.1 ([3]). In a WFI-algebra \mathfrak{X} , the following are true:

 $\begin{array}{ll} (\mathrm{b1}) & x \ominus [x,y]^2 = 1, \\ (\mathrm{b2}) & 1 \ominus x = 1 \ \Rightarrow \ x = 1, \\ (\mathrm{b3}) & 1 \ominus x = x, \\ (\mathrm{b4}) & x \ominus y = 1 \ \Rightarrow \ [y,z,x \ominus z] = 1 \,\& \, [z,x,z \ominus y] = 1, \\ (\mathrm{b5}) & [x,y,1] = [x,1,y \ominus 1], \\ (\mathrm{b6}) & [x,y]^3 = x \ominus y. \end{array}$

Denote by **WFI** the set of all WFI-algebras. Let $\mathfrak{X} \in \mathbf{WFI}$. A nonempty subset S of \mathfrak{X} is called a *subalgebra* of \mathfrak{X} if $x \ominus y \in S$ whenever $x, y \in S$.

A fuzzy set in a set X is a function \overline{A} from X to the unit interval [0, 1]. For fuzzy sets \overline{A} and \overline{B} in a set X, we define:

(c1) $\bar{A} = \bar{B} \iff (\forall x \in X)(\bar{A}(x) = \bar{B}(x)).$ (c2) $\bar{A} \subseteq \bar{B} \iff (\forall x \in X)(\bar{A}(x) \le \bar{B}(x)).$

The union $\overline{A} \cup \overline{B}$ of two fuzzy sets \overline{A} and \overline{B} in a set X is defined by

$$(\forall x \in X) ((\bar{A} \cup \bar{B})(x) = \max\{\bar{A}(x), \bar{B}(x)\}).$$

The intersection $\overline{A} \cap \overline{B}$ of two fuzzy sets \overline{A} and \overline{B} in a set X is defined by

$$(\forall x \in X) \left((A \cap B)(x) = \min\{A(x), B(x)\} \right).$$

More generally, for a family $\{\bar{A}_i \mid i \in \Lambda\}$ of fuzzy sets in a set X, the union $\bigcup_{i \in \Lambda} \bar{A}_i$ and the intersection $\bigcap_{i \in \Lambda} \bar{A}_i$ are defined by

$$\Big(\bigcup_{i\in\Lambda}\bar{A}_i\Big)(x)=\sup_{i\in\Lambda}\bar{A}_i(x),\ \Big(\bigcap_{i\in\Lambda}\bar{A}_i\Big)(x)=\inf_{i\in\Lambda}\bar{A}_i(x),$$

respectively, for all $x \in X$. Let f be a mapping from a set X into a set Y. Let \overline{B} be a fuzzy set in Y. Then $f^{-1}(\overline{B})$ is a fuzzy set in X defined by

$$(\forall x \in X)(f^{-1}(\bar{B})(x) = \bar{B}(f(x))).$$

A fuzzy topology on a set X is a family τ of fuzzy sets in X satisfying the following assertions:

- (i) $\overline{0}, \overline{1} \in \tau$.
- (ii) $(\forall \bar{A}, \bar{B} \in \tau) \ (\bar{A} \cap \bar{B} \in \tau).$

(iii) $(\forall \{\bar{A}_i \mid i \in \Lambda\} \subseteq \tau) \left(\bigcup_{i \in \Lambda} \bar{A}_i \in \tau\right)$, where Λ is any index set.

3. WFI-fuzzy topological spaces

Definition 3.1. Let $\mathfrak{X} \in \mathbf{WFI}$. A fuzzy topology τ on \mathfrak{X} is called a *WFI-fuzzy topology*. The pair (\mathfrak{X}, τ) is called a *fuzzy topological space* based on a WFI-algebra (briefly, *WFI-fuzzy topological space*).

Example 3.2. Let $X = \{1, a\}$ be a set with the following Cayley table:

$$igoplus = egin{array}{cccc} 1 & a \ 1 & 1 & a \ a & a & 1 \end{array}$$

Then $\mathfrak{X} := (X, \ominus, 1) \in \mathbf{WFI}.$

(1) Let \overline{A} , \overline{B} , \overline{C} and \overline{D} be fuzzy sets in \mathfrak{X} defined by

$$A(1) = 0.4, A(a) = 0.2, B(1) = 0.3, B(a) = 0.7,$$

$$\bar{C}(1) = 0.3, \ \bar{C}(a) = 0.2, \ \bar{D}(1) = 0.4, \ \bar{D}(a) = 0.7,$$

respectively. Then $\tau := \{\bar{0}, \bar{1}, \bar{A}, \bar{B}, \bar{C}, \bar{D}\}$ is a WFI-fuzzy topology on \mathfrak{X} , and so (\mathfrak{X}, τ) is a WFI-fuzzy topological space.

(2) For every $n \in \mathbb{N}$, let \bar{A}_n be a fuzzy set in \mathfrak{X} given by $\bar{A}_n(1) = \frac{n}{n+1}$ and $\bar{A}_n(a) = \frac{n+1}{n+2}$. Then (\mathfrak{X}, σ) is a WFI-fuzzy topological space, where $\sigma := \{\bar{0}, \bar{1}\} \cup \{\bar{A}_n \mid n \in \mathbb{N}\}.$

Example 3.3. Let $X = \{1, a, b, c\}$ be a set with the following Cayley table:

\ominus_X	1	a	b	c
1	1	a	b	c
a	a	1	c	b
b	b	c	1	a
c	c	b	a	1

Then $\mathfrak{X} := (X, \ominus_X, 1) \in \mathbf{WFI}$. Let \overline{A} and \overline{B} be fuzzy sets in \mathfrak{X} defined by

$$\bar{A}(x) := \begin{cases} 1 & \text{if } x = 1, \\ 0 & \text{otherwise,} \end{cases} \qquad \bar{B}(x) := \begin{cases} 0 & \text{if } x = 1, \\ 1 & \text{otherwise} \end{cases}$$

respectively. Then $\tau := \{\bar{0}, \bar{1}, \bar{A}, \bar{B}\}$ is a WFI-fuzzy topology on \mathfrak{X} .

Example 3.4. Let $Y = \{e, u, v, w\}$ be a set with the following Cayley table:

Θ_Y	e	u	v	w
e	e	u	v	w
u	u	e	w	v
v	w	v	e	u
w	v	w	u	e

Then $\mathfrak{Y} := (Y, \ominus_Y, e) \in \mathbf{WFI}$. Let \overline{C} and \overline{D} be fuzzy sets in \mathfrak{Y} defined by

$$\bar{C}(y) := \begin{cases} 1 & \text{if } y \in \{e, u\}, \\ 0 & \text{if } y \in \{v, w\}, \end{cases} \quad \bar{D}(y) := \begin{cases} 0 & \text{if } y \in \{e, u\}, \\ 1 & \text{if } y \in \{v, w\}, \end{cases}$$

respectively. Then $\sigma_1 := \{\bar{0}, \bar{1}, \bar{C}\}$ and $\sigma_2 := \{\bar{0}, \bar{1}, \bar{C}, \bar{D}\}$ are WFI-fuzzy topologies on \mathfrak{Y} .

Proposition 3.5. Let $\{\tau_i \mid i \in \Lambda\}$ be a family of WFI-fuzzy topologies on $\mathfrak{X} \in \mathbf{WFI}$, where Λ is any index set. Then $\bigcap_{i \in \Lambda} \tau_i$ is a WFI-fuzzy topology on \mathfrak{X} . Moreover, $\bigcap_{i \in \Lambda} \tau_i$ is the coarsest WFI-fuzzy topology on \mathfrak{X} containing τ_i for all $i \in \Lambda$.

Proof. Straightforward.

Definition 3.6. Let $\mathfrak{X} \in \mathbf{WFI}$. A fuzzy set \overline{A} in \mathfrak{X} is called a *fuzzy subalgebra* of \mathfrak{X} if it satisfies:

(3.1)
$$(\forall x, y \in X) \, (\bar{A}(x \ominus y) \ge \min\{\bar{A}(x), \bar{A}(y)\}).$$

Using the Transfer Principle (see [4]), we have a characterization of a fuzzy subalgebra.

Theorem 3.7. For a fuzzy set \overline{A} in a WFI-algebra \mathfrak{X} , the following assertions are equivalent:

- (i) \overline{A} is a fuzzy subalgebra of \mathfrak{X} .
- (ii) $(\forall t \in [0,1])$ $(U(\bar{A};t) \neq \emptyset \implies U(\bar{A};t)$ is a subalgebra of \mathfrak{X}),

where $U(\overline{A};t) = \{x \in X \mid \overline{A}(x) \ge t\}.$

Let $f : (\mathfrak{X}, \tau_1) \to (\mathfrak{Y}, \tau_2)$ be a mapping of WFI-fuzzy topological spaces. It is important to make questions of the following:

- (i) If $\overline{A} \in \tau_2$, then is $f^{-1}(\overline{A}) \in \tau_1$?
- (ii) If \overline{B} is a fuzzy subalgebra of \mathfrak{Y} which is contained in τ_2 , then is $f^{-1}(\overline{B})$ a fuzzy subalgebra of \mathfrak{X} ?

The answer is negative as given by the following example.

Example 3.8. Consider WFI-algebras \mathfrak{X} and \mathfrak{Y} which are described in Examples 3.3 and 3.4, respectively. Define a mapping $f : (\mathfrak{Y}, \sigma_1) \to (\mathfrak{X}, \tau)$ by

$$f(y) := \begin{cases} 1 & \text{if } y \in \{e, u\}, \\ b & \text{if } y = v, \\ c & \text{if } y = w. \end{cases}$$

Obviously, $f^{-1}(\overline{0}) \in \sigma_1$ and $f^{-1}(\overline{1}) \in \sigma_1$. But we know that

$$f^{-1}(\bar{B})(e) = \bar{B}(f(e)) = \bar{B}(1) = 0 = \bar{D}(e),$$

$$f^{-1}(\bar{B})(u) = \bar{B}(f(u)) = \bar{B}(1) = 0 = \bar{D}(u),$$

$$f^{-1}(\bar{B})(v) = \bar{B}(f(v)) = \bar{B}(b) = 1 = \bar{D}(v),$$

$$f^{-1}(\bar{B})(w) = \bar{B}(f(w)) = \bar{B}(c) = 1 = \bar{D}(w).$$

Hence $f^{-1}(\bar{B}) = \bar{D} \notin \sigma_1$ for $\bar{B} \in \tau$. But if we take $\sigma_2 := \{\bar{0}, \bar{1}, \bar{C}, \bar{D}\}$ instead of $\sigma_1 := \{\bar{0}, \bar{1}, \bar{C}\}$, then we can check that the answer to the question (i) above is positive. Now let \bar{E} be a fuzzy set in \mathfrak{X} defined by

$$\bar{E}(x) = \begin{cases} 0.2 & \text{if } x = 1, \\ 0.4 & \text{if } x \in \{a, b\}, \\ 0.5 & \text{if } x = c. \end{cases}$$

It is easily to check that \overline{E} is a fuzzy subalgebra of \mathfrak{X} , and $\delta := \{\overline{0}, \overline{1}, \overline{E}\}$ is a WFI-fuzzy topology on \mathfrak{X} . Then $f^{-1}(\overline{E})$ is given by

$$f^{-1}(\bar{E})(y) = \begin{cases} 0.2 & \text{if } y \in \{e, u\}, \\ 0.4 & \text{if } y = v, \\ 0.5 & \text{if } y = w, \end{cases}$$

which is not a fuzzy subalgebra of ${\mathfrak Y}$ since

$$f^{-1}(\bar{E})(w \ominus_Y v) = f^{-1}(\bar{E})(u) = 0.2 < 0.4 = \min\{f^{-1}(\bar{E})(w), f^{-1}(\bar{E})(v)\}.$$

This shows that the answer to the second question above is negative.

Based on this result, we proceed on to define the notion of WFI-fuzzy continuous mappings.

Definition 3.9. Let (\mathfrak{X}, τ) and (\mathfrak{Y}, σ) be WFI-fuzzy topological spaces. A mapping $f : \mathfrak{X} \to \mathfrak{Y}$ is said to be *WFI-fuzzy continuous* if it satisfies the following assertions:

- (i) $(\forall \bar{A} \in \sigma) \ (f^{-1}(\bar{A}) \in \tau),$
- (ii) If \overline{B} is a fuzzy subalgebra of \mathfrak{Y} which is contained in σ , then $f^{-1}(\overline{B})$ is a fuzzy subalgebra of \mathfrak{X} .

We provide examples of a WFI-fuzzy continuous mapping.

Example 3.10. Let (\mathfrak{X}, τ) and (\mathfrak{Y}, σ_2) be WFI-fuzzy topological spaces which are given in Examples 3.3 and 3.4, respectively. Let $g : \mathfrak{Y} \to \mathfrak{X}$ be a function defined by

$$g(y) := \begin{cases} 1 & \text{if } y \in \{e, u\}, \\ b & \text{if } y = v, \\ c & \text{if } y = w. \end{cases}$$

Obviously $g^{-1}(\bar{0}) \in \tau$ and $g^{-1}(\bar{1}) \in \tau$. Now we have

$$\begin{split} g^{-1}(\bar{A})(e) &= \bar{A}(g(e)) = \bar{A}(1) = 1 = \bar{C}(e), \\ g^{-1}(\bar{A})(u) &= \bar{A}(g(u)) = \bar{A}(1) = 1 = \bar{C}(u), \\ g^{-1}(\bar{A})(v) &= \bar{A}(g(v)) = \bar{A}(b) = 0 = \bar{C}(v), \\ g^{-1}(\bar{A})(w) &= \bar{A}(g(w)) = \bar{A}(c) = 0 = \bar{C}(w) \end{split}$$

and

$$g^{-1}(\bar{B})(e) = \bar{B}(g(e)) = \bar{B}(1) = 0 = \bar{D}(e),$$

$$g^{-1}(\bar{B})(u) = \bar{B}(g(u)) = \bar{B}(1) = 0 = \bar{D}(u),$$

$$g^{-1}(\bar{B})(v) = \bar{B}(g(v)) = \bar{B}(b) = 1 = \bar{D}(v),$$

$$g^{-1}(\bar{B})(w) = \bar{B}(g(w)) = \bar{B}(c) = 1 = \bar{D}(w).$$

It follows that $g^{-1}(\bar{A}) = \bar{C} \in \sigma_2$ and $g^{-1}(\bar{B}) = \bar{D} \in \sigma_2$. Note that $\bar{0}$, $\bar{1}$ and \bar{A} are fuzzy subalgebras of \mathfrak{X} . But \bar{B} is not a fuzzy subalgebra of \mathfrak{X} since

$$\bar{B}(b \ominus_X b) = \bar{B}(1) = 0 < 1 = \min\{\bar{B}(b), \bar{B}(b)\}.$$

It is clear that $g^{-1}(\bar{0})$ and $g^{-1}(\bar{1})$ are fuzzy subalgebras of \mathfrak{Y} , and it is easy to verify that $g^{-1}(\bar{A})$ is a fuzzy subalgebra of \mathfrak{Y} . Hence g is a WFI-fuzzy continuous mapping.

Example 3.11. Let \mathfrak{X} be a WFI-algebra which is given in Example 3.2. Let $Y = \{e, x, y\}$ be a set with the following Cayley table:

\ominus_Y	e	x	y
e	e	x	y
x	y	e	x
y	x	y	e

Then $\mathfrak{Y} := (Y; \ominus_Y, e)$ is a WFI-algebra. Let τ_X and τ_Y be discrete WFI-fuzzy topologies on \mathfrak{X} and \mathfrak{Y} , respectively. Define a mapping $f : (\mathfrak{X}, \tau_X) \to (\mathfrak{Y}, \tau_Y)$ by f(1) = e and f(a) = x. Clearly, $f^{-1}(\bar{A}) \in \tau_X$ for all $\bar{A} \in \tau_Y$. Let \bar{B} be a fuzzy subalgebra of \mathfrak{Y} which is contained in τ_Y . If $\bar{B} = \bar{0}$ or $\bar{B} = \bar{1}$, then clearly $f^{-1}(\bar{B})$ is a fuzzy subalgebra of \mathfrak{X} . Assume that $\bar{B} \neq \bar{0}$ and $\bar{B} \neq \bar{1}$. Since \mathfrak{Y} has only two subalgebras $\{e\}$ and Y itself, using Theorem 3.7 implies that \bar{B} has the following form:

$$\bar{B}(u) = \begin{cases} t_1 & \text{if } u = e, \\ t_2 & \text{if } u \in \{x, y\}, \end{cases}$$

where $t_1, t_2 \in [0, 1]$ with $t_1 > t_2$. For every $x \in X$, we have

$$f^{-1}(\bar{B})(x) = \bar{B}(f(x)) = \begin{cases} t_1 & \text{if } x = 1, \\ t_2 & \text{if } x = a. \end{cases}$$

Hence $f^{-1}(\bar{B})$ is a fuzzy subalgebra of \mathfrak{X} . Therefore f is a WFI-fuzzy continuous mapping.

Theorem 3.12. Let (\mathfrak{X}, τ_X) and (\mathfrak{Y}, τ_Y) be WFI-fuzzy topological spaces and let $f : \mathfrak{X} \to \mathfrak{Y}$ be a mapping. If τ_Y is indiscrete, then f is WFI-fuzzy continuous.

Proof. Straightforward.

Remark 3.13. Although τ_X is discrete, a mapping $f : (\mathfrak{X}, \tau_X) \to (\mathfrak{Y}, \tau_Y)$ may not be a WFI-fuzzy continuous mapping (see Example 3.8).

Definition 3.14. A mapping $f : \mathfrak{X} \to \mathfrak{Y}$ of WFI-algebras \mathfrak{X} and \mathfrak{Y} is called a *WFI-homomorphism* if it satisfies:

 $(\forall x, y \in X)(f(x \ominus y) = f(x) \ominus f(y)).$

We now discuss the relation between WFI-homomorphisms and WFI-fuzzy continuous mappings. It is natural to give the following question.

Question 3.15. Is any WFI-homomorphism a WFI-fuzzy continuous mapping?

The following example provide a negative answer to the above question.

Example 3.16. Let $X = \{e, a, b, c\}$ be a set with the following Cayley table:

Then $\mathfrak{X} := (X, \ominus_X, e) \in \mathbf{WFI}$. Let \overline{A} and \overline{B} be fuzzy sets in G defined by

$$\bar{A}(x) = \begin{cases} 1 & \text{if } x = e, \\ 0 & \text{otherwise,} \end{cases} \quad \text{and} \quad \bar{B}(x) = \begin{cases} 0 & \text{if } x = e, \\ 1 & \text{otherwise,} \end{cases}$$

respectively. Then $\tau_1 = \{\bar{0}, \bar{1}, \bar{A}\}$ and $\tau_2 = \{\bar{0}, \bar{1}, \bar{B}\}$ are WFI-fuzzy topologies on \mathfrak{X} . Let $f : (\mathfrak{X}, \tau_1) \to (\mathfrak{X}, \tau_2)$ be a function defined by f(e) = e, f(a) = b,f(b) = a, and f(c) = c. Then it is easy to verify that f is a WFI-homomorphism. Now we have

$$f^{-1}(B)(e) = B(f(e)) = B(e),$$

$$f^{-1}(\bar{B})(c) = \bar{B}(f(c)) = \bar{B}(c),$$

$$f^{-1}(\bar{B})(a) = \bar{B}(f(a)) = \bar{B}(b) = \bar{B}(a),$$

$$f^{-1}(\bar{B})(b) = \bar{B}(f(b)) = \bar{B}(a) = \bar{B}(b),$$

and so $f^{-1}(\bar{B}) = \bar{B} \notin \tau_1$. Hence f is not a WFI-fuzzy continuous mapping.

Theorem 3.17. Let (\mathfrak{X}, τ_X) and (\mathfrak{Y}, τ_Y) be WFI-fuzzy topological spaces and assume that τ_X is discrete. Then every WFI-homomorphism $f : \mathfrak{X} \to \mathfrak{Y}$ is a WFI-fuzzy continuous mapping.

Proof. Let $f : \mathfrak{X} \to \mathfrak{Y}$ be a WFI-homomorphism. Obviously, $f^{-1}(\bar{A}) \in \tau_X$ for all $\bar{A} \in \tau_Y$. Let \bar{B} be a fuzzy subalgebra of \mathfrak{Y} which is contained in τ_Y . For any $x, y \in X$, we have

$$\begin{aligned} f^{-1}(\bar{B})(x \ominus y) &= \bar{B}(f(x \ominus y)) = \bar{B}(f(x) \ominus f(y)) \\ &\geq \min\{\bar{B}(f(x)), \bar{B}(f(y))\} \\ &= \min\{f^{-1}(\bar{B})(x), f^{-1}(\bar{B})(y)\}, \end{aligned}$$

and hence $f^{-1}(\overline{B})$ is a fuzzy subalgebra of \mathfrak{X} . Therefore f is a WFI-fuzzy continuous mapping.

The following example shows that the converse of Theorem 3.17 is not true in general.

Example 3.18. The mapping f in Example 3.11 is WFI-fuzzy continuous, but not a WFI-homomorphism since

$$f(a \ominus 1) = f(a) = x \neq y = x \ominus_Y e = f(a) \ominus_Y f(1).$$

References

- M. Caldas, G. Navalagi, and R. Saraf, Weakly θ-closed functions between fuzzy topological spaces, Mat. Vesnik 54 (2002), no. 1-2, 13-20.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [3] Y. B. Jun, Weak fuzzy implication algebras, Adv. Stud. Contemp. Math. (Kyungshang) 7 (2003), no. 1, 41–52.
- [4] Y. B. Jun and M. Kondo, On transfer principle of fuzzy BCK/BCI-algebras, Sci. Math. Jpn. 59 (2004), no. 1, 35–40.
- [5] Y. B. Jun, C. H. Park, and E. H. Roh, Characterizations of filters and ideals on WFIalgebras, Honam Math. J. 28 (2006), no. 4, 471–484.
- [6] Y. B. Jun and S. Z. Song, Simulative and mutant WFI-algebras, Honam Math. J. 28 (2006), no. 4, 559–572.
- Z. Li and C. Zheng, Relations between fuzzy implication algebra and MV algebra, J. Fuzzy Math. 9 (2001), no. 1, 201–205.
- [8] F. G. Lupiáñez, C-scattered fuzzy topological spaces, Appl. Math. Lett. 14 (2001), no. 2, 201–204.
- [9] _____, Fuzzy partitions of unity, Mat. Vesnik 56 (2004), no. 1-2, 13–15.
- [10] W. M. Wu, Fuzzy implication algebras, Fuzzy Systems Math. 4 (1990), no. 1, 56–63.
- [11] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.

DEPARTMENT OF MATHEMATICS EDUCATION (AND RINS) GYEONGSANG NATIONAL UNIVERSITY CHINJU 660-701, KOREA *E-mail address:* skywine@gmail.com