DOI QR코드

DOI QR Code

GIS와 인공신경망을 이용한 금-은 광물 부존적지 선정 및 검증

Gold-Silver Mineral Potential Mapping and Verification Using GIS and Artificial Neural Network

  • 오현주 (한국지질자원연구원 지질정보연구실)
  • Oh, Hyun-Joo (Geoscience Information Department, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2010.01.28
  • 심사 : 2010.08.30
  • 발행 : 2010.09.30

초록

본 연구에서는 지리정보시스템(GIS)과 인공신경망 기법을 이용하여 강원도 태백산광화대 지역의 금-은 광물부존 가능성도를 작성 및 검증하고자 한다. 금-은 광상과 관련된 요인으로는 지질, 단층, As, Cu, Mo, Ni, Pb, Zn 등의 지화학 자료를 선정하여 GIS 기반의 공간 데이터베이스로 구축하였다. 46개소의 금-은 광상은 훈련 및 검증 자료로 분류하여 광물부존 가능성 분석과 검증에 사용하였다. 인공신경망 분석에 있어서 광상 분포지역과 미 분포지역에 대한 훈련자료는 기존 광상의 위치와 우도비 방법으로 도출된 광물부존 가능지수의 하위 10%에 해당하는 지역으로 선정하였다. 금-은 광물부존 가능성도의 신뢰도를 검증하기 위해 광물부존 가능지수의 상위 5% 지역 내에서 암석시료를 채취한 후 Au, Ag, As, Cu, Pb, Zn 원소의 성분을 분석하였다. 그 결과 No. 4의 시료는 다른 시료들보다 각 원소별로 높은 함량을 보였다.

The aim of this study is to analyze gold-silver mineral potential in the Taebaeksan mineralized district, Korea using a Geographic Information System(GIS) and an artificial neural network(ANN) model. A spatial database considering Au and Ag deposit, geology, fault structure and geochemical data of As, Cu, Mo, Ni, Pb and Zn was constructed for the study area using the GIS. The 46 Au and Ag mineral deposits were randomly divided into a training set to analyze mineral potential using ANN and a test set to verify mineral potential map. In the ANN model, training sets for areas with mineral deposits and without them were selected randomly from the lower 10% areas of the mineral potential index derived from existing mineral deposits using likelihood ratio. To support the reliability of the Au-Ag mineral potential map, some of rock samples were selected in the upper 5% areas of the mineral potential index without known deposits and analyzed for Au, Ag, As, Cu, Pb and Zn. As the result, No. 4 of sample exhibited more enrichments of all elements than the others.

키워드

참고문헌

  1. 고상모, 황덕환, 김수영, 이동진, 김대업, 이한영, 김용욱, 유장한, 김영인, 류충렬, 송민섭. 2003. 국내광물자원 자료전산화 및 광상재 평가 종합시스템 개발연구 III (1:250,000 서울, 강릉지질도폭). 한국지질자원연구원 84쪽.
  2. 박맹언, 성규열, 백승균, 김필근, 강흥석, 문영환. 2005. 칼린형 금광상 탐사와 국내 적용성 연구. 자원환경지질 38(4):421-434.
  3. 성규열, 박맹언, 윤성택, 문영환, 유인걸, 김량희, 신종기, 김의준. 2007. 태백산 광화대북부에서 칼린형 금광화작용 부존 잠재력 평가를 위한 지구화학 탐사. 자원환경지질40(5):537-549.
  4. 유승록. 2008. 세계 자원정쟁의 방향과 시사점. 포스코경영연구소.
  5. 이사로, 오현주, 민경덕. 2006. 지리정보시스템(GIS) 및 Weight of Evidence 기법을 이용한 강릉지역의 퇴적기원의 비금속 광상부존가능성 분석. 한국GIS학회 14(1):129-150.
  6. 이진수, 서효준, 황인호. 1998. 지화학조사연구(1:250,000 강릉도폭 광역지화학도). 한국지질자원연구원 KIGAM Research Report KR-98(C)-02.
  7. 태백산지구 지하자원조사단. 1962. 태백산 지구 지질도. 대한지질학회.
  8. Agterberg, F.P. and G.F. Bonham-Carter. 2005. Measuring performance of mineral -potential maps. Natural Resources Research 14(1):1-17. https://doi.org/10.1007/s11053-005-4674-0
  9. An, P., W.M. Moon and A. Rencz. 1991. Application of fuzzy set theory to integrated mineral exploration. Canadian Journal of Exploration Geophysics 27:1-11.
  10. Behnia, P. 2007. Application of radial basis functional link networks to exploration for proterozoic mineral deposits in central Ira. Natural Resources Research 16(2):147-155. https://doi.org/10.1007/s11053-007-9036-7
  11. Bonham-Carter, G.F., F.P. Agterberg and D.F. Wright. 1988. Integration of geological datasets for gold exploration in Nova Scotia. Photogrammetic Engineering and Remote Sensing 54:1585-1592.
  12. Carranza, E.J.M., T. Woldai and E.M. Chikambwe. 2005. Application of data - driven evidential belief functions to prospectivity mapping for aquamarine - bearing pegmatites, Lundazi District, Zambia. Natural Resources Research 14(1):47-63. https://doi.org/10.1007/s11053-005-4678-9
  13. Chung, C.F. and F.P. Agterberg. 1980. Regression models for estimating mineral resources from geological map data. Mathematical Geology 12(5):473- 488. https://doi.org/10.1007/BF01028881
  14. De Quadros, T.F.P., J.C. Koppe, A.J. Strieder and J.F.C.L. Costa. 2006. Mineral-potential mapping: A comparison of weights-of-evidence and fuzzy methods. Natural Resources Research 15(1):49-65. https://doi.org/10.1007/s11053-006-9010-9
  15. Harris, D., L. Zurcher, M. Stanley, J. Marlow and G. Pan. 2003. A comparative analysis of favorability mapping by weights of evidence, probabilistic neural networks, discriminant analysis and logistic regression. Natural Resources Research 12(4):241-255.
  16. Hines, J.W. 1997. Fuzzy and Neural Approaches in Engineering, John Wiley and Sons, New York, pp.209.
  17. James, L.P., M.E. Park and H.C. Shin. 2001. Sediment-hosted disseminated and skarn mineralization in the Taebaegsan region, South Korea : occurrence and environment of formation. International Symposium on Gold and Hydrothermal System, Fukuoka, Japan. pp.145.
  18. Lee, S., J. Choi and I. Woo. 2004. The effect of spatial resoulution on the accuracy of landslide susceptibility mapping: a case study in Boun, Korea. Geosciences Journal 8(1):51-60. https://doi.org/10.1007/BF02910278
  19. Leite, E.P. and C.R. Souza Filho. 2009. Artificial neural networks applied to mineral potential mapping for copper-gold mineralizations in the Carajas Mineral Province, Brazil. Geophysical Prospecting 57(6):1049-1065. https://doi.org/10.1111/j.1365-2478.2008.00779.x
  20. Li, Z. and S.G. Peters. 1998. Comparative geology and geochemistry of sedimentary-rock-hosted (Carlin type) gold deposits in the People's Republic of China and in Nevada, USA. U.S. Geological Survey. Open-File Report 98-466, pp.160.
  21. Moon, W.M. 1990. Integration of geophysical and geological data using evidential belief function. IEEE Transactions on Geoscience and Remote Sensing 28:711-720. https://doi.org/10.1109/TGRS.1990.572988
  22. Nykanen, V. 2008. Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield. Natural Resources Research 17(1):29- 47. https://doi.org/10.1007/s11053-008-9062-0
  23. Oh, H.-J. and S. Lee. 2008. Regional probabilistic and statistical mineral potential, mapping of gold–silver deposits using GIS in the Gangreung area, Korea. Resource Geology 58(2):171-187. https://doi.org/10.1111/j.1751-3928.2008.00050.x
  24. Oh, H.-J. and S. Lee. 2010. Application of artificial neural network for gold-silver deposits potential mapping: A case study of Korea. Natural Resources Research 19(2):103-124. https://doi.org/10.1007/s11053-010-9112-2
  25. Paola, J.D. and R.A. Schowengerdt. 1995. A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery. International Journal of Remote Sensing 16(16):3033-3058. https://doi.org/10.1080/01431169508954607
  26. Park, M.E., K.Y. Sung and Y.H. Moon. 2002. Technical report on exploration of Carlin-type gold deposits. Korea Resources Corporation pp.135.
  27. Porwal, A., E.J.M. Carranza and M. Hale. 2003. Artificial Neural Networks for Mineral -Potential Mapping : A Case Study from Aravalli Province, Western India. Natural Resources Research 12(3):155-171. https://doi.org/10.1023/A:1025171803637
  28. Radtke, A.S., C.M. Taylor and C.L. Christ. 1972. Chemical distribution of gold and mercury at the Carlin deposit, Nevada. Geol Soc Am, Annu Meet, Abstr. Vol. 4, pp.632.
  29. Skabar, A. 2005. Mapping mineralization probabilities using multilayer perceptrons. Natural Resources Research 14(2):109- 123. https://doi.org/10.1007/s11053-005-6955-z
  30. Skabar, A. 2007. Modeling the spatial distribution of mineral deposits using neural networks. Natural Resource Modeling 20(3):435-450.
  31. Swingler, K. 1996. Applying neural networks: A practical guide, Academic press, London (1996).

피인용 문헌

  1. 도시내 범죄발생과 범죄 두려움 위치의 공간적 차이 분석 vol.14, pp.4, 2010, https://doi.org/10.11108/kagis.2011.14.4.194
  2. 미래 확률강우량 및 인공신경망을 이용한 산사태 위험도 분석 기법 개발 및 검증 vol.15, pp.2, 2010, https://doi.org/10.11108/kagis.2012.15.2.057
  3. 빈도비 모델과 GIS을 이용한 침수 취약 지역 예측 기법 개발 및 검증 vol.15, pp.2, 2010, https://doi.org/10.11108/kagis.2012.15.2.086
  4. 3차원 Web GIS 기반 풍력에너지 시설물 적지분석 시스템 개발 vol.15, pp.3, 2012, https://doi.org/10.11108/kagis.2012.15.3.081
  5. 퍼지모형과 GIS를 활용한 기후변화 홍수취약성 평가 - 서울시 사례를 중심으로 - vol.15, pp.3, 2012, https://doi.org/10.11108/kagis.2012.15.3.119